-
Notifications
You must be signed in to change notification settings - Fork 6
/
samegame.c
1688 lines (1463 loc) · 48.6 KB
/
samegame.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* 'same game' -- try to remove all the coloured squares by
* selecting regions of contiguous colours.
*/
/*
* TODO on grid generation:
*
* - Generation speed could still be improved.
* * 15x10c3 is the only really difficult one of the existing
* presets. The others are all either small enough, or have
* the great flexibility given by four colours, that they
* don't take long at all.
* * I still suspect many problems arise from separate
* subareas. I wonder if we can also somehow prioritise left-
* or rightmost insertions so as to avoid area splitting at
* all where feasible? It's not easy, though, because the
* current shuffle-then-try-all-options approach to move
* choice doesn't leave room for `soft' probabilistic
* prioritisation: we either try all class A moves before any
* class B ones, or we don't.
*
* - The current generation algorithm inserts exactly two squares
* at a time, with a single exception at the beginning of
* generation for grids of odd overall size. An obvious
* extension would be to permit larger inverse moves during
* generation.
* * this might reduce the number of failed generations by
* making the insertion algorithm more flexible
* * on the other hand, it would be significantly more complex
* * if I do this I'll need to take out the odd-subarea
* avoidance
* * a nice feature of the current algorithm is that the
* computer's `intended' solution always receives the minimum
* possible score, so that pretty much the player's entire
* score represents how much better they did than the
* computer.
*
* - Is it possible we can _temporarily_ tolerate neighbouring
* squares of the same colour, until we've finished setting up
* our inverse move?
* * or perhaps even not choose the colour of our inserted
* region until we have finished placing it, and _then_ look
* at what colours border on it?
* * I don't think this is currently meaningful unless we're
* placing more than a domino at a time.
*
* - possibly write out a full solution so that Solve can somehow
* show it step by step?
* * aux_info would have to encode the click points
* * solve_game() would have to encode not only those click
* points but also give a move string which reconstructed the
* initial state
* * the game_state would include a pointer to a solution move
* list, plus an index into that list
* * game_changed_state would auto-select the next move if
* handed a new state which had a solution move list active
* * execute_move, if passed such a state as input, would check
* to see whether the move being made was the same as the one
* stated by the solution, and if so would advance the move
* index. Failing that it would return a game_state without a
* solution move list active at all.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <ctype.h>
#include <math.h>
#include "puzzles.h"
#define TILE_INNER (ds->tileinner)
#define TILE_GAP (ds->tilegap)
#define TILE_SIZE (TILE_INNER + TILE_GAP)
#define PREFERRED_TILE_SIZE 32
#define BORDER (TILE_SIZE / 2)
#define HIGHLIGHT_WIDTH 2
#define FLASH_FRAME 0.13F
#define COORD(x) ( (x) * TILE_SIZE + BORDER )
#define FROMCOORD(x) ( ((x) - BORDER + TILE_SIZE) / TILE_SIZE - 1 )
#define X(state, i) ( (i) % (state)->params.w )
#define Y(state, i) ( (i) / (state)->params.w )
#define C(state, x, y) ( (y) * (state)->w + (x) )
enum {
COL_BACKGROUND,
COL_1, COL_2, COL_3, COL_4, COL_5, COL_6, COL_7, COL_8, COL_9,
COL_IMPOSSIBLE, COL_SEL, COL_HIGHLIGHT, COL_LOWLIGHT,
NCOLOURS
};
/* scoresub is 1 or 2 (for (n-1)^2 or (n-2)^2) */
struct game_params {
int w, h, ncols, scoresub;
bool soluble; /* choose generation algorithm */
};
/* These flags must be unique across all uses; in the game_state,
* the game_ui, and the drawstate (as they all get combined in the
* drawstate). */
#define TILE_COLMASK 0x00ff
#define TILE_SELECTED 0x0100 /* used in ui and drawstate */
#define TILE_JOINRIGHT 0x0200 /* used in drawstate */
#define TILE_JOINDOWN 0x0400 /* used in drawstate */
#define TILE_JOINDIAG 0x0800 /* used in drawstate */
#define TILE_HASSEL 0x1000 /* used in drawstate */
#define TILE_IMPOSSIBLE 0x2000 /* used in drawstate */
#define TILE(gs,x,y) ((gs)->tiles[(gs)->params.w*(y)+(x)])
#define COL(gs,x,y) (TILE(gs,x,y) & TILE_COLMASK)
#define ISSEL(gs,x,y) (TILE(gs,x,y) & TILE_SELECTED)
#define SWAPTILE(gs,x1,y1,x2,y2) do { \
int t = TILE(gs,x1,y1); \
TILE(gs,x1,y1) = TILE(gs,x2,y2); \
TILE(gs,x2,y2) = t; \
} while (0)
static int npoints(const game_params *params, int nsel)
{
int sdiff = nsel - params->scoresub;
return (sdiff > 0) ? sdiff * sdiff : 0;
}
struct game_state {
struct game_params params;
int n;
int *tiles; /* colour only */
int score;
bool complete, impossible;
};
static game_params *default_params(void)
{
game_params *ret = snew(game_params);
ret->w = 5;
ret->h = 5;
ret->ncols = 3;
ret->scoresub = 2;
ret->soluble = true;
return ret;
}
static const struct game_params samegame_presets[] = {
{ 5, 5, 3, 2, true },
{ 10, 5, 3, 2, true },
#ifdef SLOW_SYSTEM
{ 10, 10, 3, 2, true },
#else
{ 15, 10, 3, 2, true },
#endif
{ 15, 10, 4, 2, true },
{ 20, 15, 4, 2, true }
};
static bool game_fetch_preset(int i, char **name, game_params **params)
{
game_params *ret;
char str[80];
if (i < 0 || i >= lenof(samegame_presets))
return false;
ret = snew(game_params);
*ret = samegame_presets[i];
sprintf(str, "%dx%d, %d colours", ret->w, ret->h, ret->ncols);
*name = dupstr(str);
*params = ret;
return true;
}
static void free_params(game_params *params)
{
sfree(params);
}
static game_params *dup_params(const game_params *params)
{
game_params *ret = snew(game_params);
*ret = *params; /* structure copy */
return ret;
}
static void decode_params(game_params *params, char const *string)
{
char const *p = string;
params->w = atoi(p);
while (*p && isdigit((unsigned char)*p)) p++;
if (*p == 'x') {
p++;
params->h = atoi(p);
while (*p && isdigit((unsigned char)*p)) p++;
} else {
params->h = params->w;
}
if (*p == 'c') {
p++;
params->ncols = atoi(p);
while (*p && isdigit((unsigned char)*p)) p++;
} else {
params->ncols = 3;
}
if (*p == 's') {
p++;
params->scoresub = atoi(p);
while (*p && isdigit((unsigned char)*p)) p++;
} else {
params->scoresub = 2;
}
if (*p == 'r') {
p++;
params->soluble = false;
}
}
static char *encode_params(const game_params *params, bool full)
{
char ret[80];
sprintf(ret, "%dx%dc%ds%d%s",
params->w, params->h, params->ncols, params->scoresub,
full && !params->soluble ? "r" : "");
return dupstr(ret);
}
static config_item *game_configure(const game_params *params)
{
config_item *ret;
char buf[80];
ret = snewn(6, config_item);
ret[0].name = "Width";
ret[0].type = C_STRING;
sprintf(buf, "%d", params->w);
ret[0].u.string.sval = dupstr(buf);
ret[1].name = "Height";
ret[1].type = C_STRING;
sprintf(buf, "%d", params->h);
ret[1].u.string.sval = dupstr(buf);
ret[2].name = "No. of colours";
ret[2].type = C_STRING;
sprintf(buf, "%d", params->ncols);
ret[2].u.string.sval = dupstr(buf);
ret[3].name = "Scoring system";
ret[3].type = C_CHOICES;
ret[3].u.choices.choicenames = ":(n-1)^2:(n-2)^2";
ret[3].u.choices.selected = params->scoresub-1;
ret[4].name = "Ensure solubility";
ret[4].type = C_BOOLEAN;
ret[4].u.boolean.bval = params->soluble;
ret[5].name = NULL;
ret[5].type = C_END;
return ret;
}
static game_params *custom_params(const config_item *cfg)
{
game_params *ret = snew(game_params);
ret->w = atoi(cfg[0].u.string.sval);
ret->h = atoi(cfg[1].u.string.sval);
ret->ncols = atoi(cfg[2].u.string.sval);
ret->scoresub = cfg[3].u.choices.selected + 1;
ret->soluble = cfg[4].u.boolean.bval;
return ret;
}
static const char *validate_params(const game_params *params, bool full)
{
if (params->w < 1 || params->h < 1)
return "Width and height must both be positive";
if (params->ncols > 9)
return "Maximum of 9 colours";
if (params->soluble) {
if (params->ncols < 3)
return "Number of colours must be at least three";
if (params->w * params->h <= 1)
return "Grid area must be greater than 1";
} else {
if (params->ncols < 2)
return "Number of colours must be at least three";
/* ...and we must make sure we can generate at least 2 squares
* of each colour so it's theoretically soluble. */
if ((params->w * params->h) < (params->ncols * 2))
return "Too many colours makes given grid size impossible";
}
if ((params->scoresub < 1) || (params->scoresub > 2))
return "Scoring system not recognised";
return NULL;
}
/*
* Guaranteed-soluble grid generator.
*/
static void gen_grid(int w, int h, int nc, int *grid, random_state *rs)
{
int wh = w*h, tc = nc+1;
int i, j, k, c, x, y, pos, n;
int *list, *grid2;
bool ok;
int failures = 0;
/*
* We'll use `list' to track the possible places to put our
* next insertion. There are up to h places to insert in each
* column: in a column of height n there are n+1 places because
* we can insert at the very bottom or the very top, but a
* column of height h can't have anything at all inserted in it
* so we have up to h in each column. Likewise, with n columns
* present there are n+1 places to fit a new one in between but
* we can't insert a column if there are already w; so there
* are a maximum of w new columns too. Total is wh + w.
*/
list = snewn(wh + w, int);
grid2 = snewn(wh, int);
do {
/*
* Start with two or three squares - depending on parity of w*h
* - of a random colour.
*/
for (i = 0; i < wh; i++)
grid[i] = 0;
j = 2 + (wh % 2);
c = 1 + random_upto(rs, nc);
if (j <= w) {
for (i = 0; i < j; i++)
grid[(h-1)*w+i] = c;
} else {
assert(j <= h);
for (i = 0; i < j; i++)
grid[(h-1-i)*w] = c;
}
/*
* Now repeatedly insert a two-square blob in the grid, of
* whatever colour will go at the position we chose.
*/
while (1) {
n = 0;
/*
* Build up a list of insertion points. Each point is
* encoded as y*w+x; insertion points between columns are
* encoded as h*w+x.
*/
if (grid[wh - 1] == 0) {
/*
* The final column is empty, so we can insert new
* columns.
*/
for (i = 0; i < w; i++) {
list[n++] = wh + i;
if (grid[(h-1)*w + i] == 0)
break;
}
}
/*
* Now look for places to insert within columns.
*/
for (i = 0; i < w; i++) {
if (grid[(h-1)*w+i] == 0)
break; /* no more columns */
if (grid[i] != 0)
continue; /* this column is full */
for (j = h; j-- > 0 ;) {
list[n++] = j*w+i;
if (grid[j*w+i] == 0)
break; /* this column is exhausted */
}
}
if (n == 0)
break; /* we're done */
#ifdef GENERATION_DIAGNOSTICS
printf("initial grid:\n");
{
int x,y;
for (y = 0; y < h; y++) {
for (x = 0; x < w; x++) {
if (grid[y*w+x] == 0)
printf("-");
else
printf("%d", grid[y*w+x]);
}
printf("\n");
}
}
#endif
/*
* Now go through the list one element at a time in
* random order, and actually attempt to insert
* something there.
*/
while (n-- > 0) {
int dirs[4], ndirs, dir;
i = random_upto(rs, n+1);
pos = list[i];
list[i] = list[n];
x = pos % w;
y = pos / w;
memcpy(grid2, grid, wh * sizeof(int));
if (y == h) {
/*
* Insert a column at position x.
*/
for (i = w-1; i > x; i--)
for (j = 0; j < h; j++)
grid2[j*w+i] = grid2[j*w+(i-1)];
/*
* Clear the new column.
*/
for (j = 0; j < h; j++)
grid2[j*w+x] = 0;
/*
* Decrement y so that our first square is actually
* inserted _in_ the grid rather than just below it.
*/
y--;
}
/*
* Insert a square within column x at position y.
*/
for (i = 0; i+1 <= y; i++)
grid2[i*w+x] = grid2[(i+1)*w+x];
#ifdef GENERATION_DIAGNOSTICS
printf("trying at n=%d (%d,%d)\n", n, x, y);
grid2[y*w+x] = tc;
{
int x,y;
for (y = 0; y < h; y++) {
for (x = 0; x < w; x++) {
if (grid2[y*w+x] == 0)
printf("-");
else if (grid2[y*w+x] <= nc)
printf("%d", grid2[y*w+x]);
else
printf("*");
}
printf("\n");
}
}
#endif
/*
* Pick our square colour so that it doesn't match any
* of its neighbours.
*/
{
int wrongcol[4], nwrong = 0;
/*
* List the neighbouring colours.
*/
if (x > 0)
wrongcol[nwrong++] = grid2[y*w+(x-1)];
if (x+1 < w)
wrongcol[nwrong++] = grid2[y*w+(x+1)];
if (y > 0)
wrongcol[nwrong++] = grid2[(y-1)*w+x];
if (y+1 < h)
wrongcol[nwrong++] = grid2[(y+1)*w+x];
/*
* Eliminate duplicates. We can afford a shoddy
* algorithm here because the problem size is
* bounded.
*/
for (i = j = 0 ;; i++) {
int pos = -1, min = 0;
if (j > 0)
min = wrongcol[j-1];
for (k = i; k < nwrong; k++)
if (wrongcol[k] > min &&
(pos == -1 || wrongcol[k] < wrongcol[pos]))
pos = k;
if (pos >= 0) {
int v = wrongcol[pos];
wrongcol[pos] = wrongcol[j];
wrongcol[j++] = v;
} else
break;
}
nwrong = j;
/*
* If no colour will go here, stop trying.
*/
if (nwrong == nc)
continue;
/*
* Otherwise, pick a colour from the remaining
* ones.
*/
c = 1 + random_upto(rs, nc - nwrong);
for (i = 0; i < nwrong; i++) {
if (c >= wrongcol[i])
c++;
else
break;
}
}
/*
* Place the new square.
*
* Although I've _chosen_ the new region's colour
* (so that we can check adjacency), I'm going to
* actually place it as an invalid colour (tc)
* until I'm sure it's viable. This is so that I
* can conveniently check that I really have made a
* _valid_ inverse move later on.
*/
#ifdef GENERATION_DIAGNOSTICS
printf("picked colour %d\n", c);
#endif
grid2[y*w+x] = tc;
/*
* Now attempt to extend it in one of three ways: left,
* right or up.
*/
ndirs = 0;
if (x > 0 &&
grid2[y*w+(x-1)] != c &&
grid2[x-1] == 0 &&
(y+1 >= h || grid2[(y+1)*w+(x-1)] != c) &&
(y+1 >= h || grid2[(y+1)*w+(x-1)] != 0) &&
(x <= 1 || grid2[y*w+(x-2)] != c))
dirs[ndirs++] = -1; /* left */
if (x+1 < w &&
grid2[y*w+(x+1)] != c &&
grid2[x+1] == 0 &&
(y+1 >= h || grid2[(y+1)*w+(x+1)] != c) &&
(y+1 >= h || grid2[(y+1)*w+(x+1)] != 0) &&
(x+2 >= w || grid2[y*w+(x+2)] != c))
dirs[ndirs++] = +1; /* right */
if (y > 0 &&
grid2[x] == 0 &&
(x <= 0 || grid2[(y-1)*w+(x-1)] != c) &&
(x+1 >= w || grid2[(y-1)*w+(x+1)] != c)) {
/*
* We add this possibility _twice_, so that the
* probability of placing a vertical domino is
* about the same as that of a horizontal. This
* should yield less bias in the generated
* grids.
*/
dirs[ndirs++] = 0; /* up */
dirs[ndirs++] = 0; /* up */
}
if (ndirs == 0)
continue;
dir = dirs[random_upto(rs, ndirs)];
#ifdef GENERATION_DIAGNOSTICS
printf("picked dir %d\n", dir);
#endif
/*
* Insert a square within column (x+dir) at position y.
*/
for (i = 0; i+1 <= y; i++)
grid2[i*w+x+dir] = grid2[(i+1)*w+x+dir];
grid2[y*w+x+dir] = tc;
/*
* See if we've divided the remaining grid squares
* into sub-areas. If so, we need every sub-area to
* have an even area or we won't be able to
* complete generation.
*
* If the height is odd and not all columns are
* present, we can increase the area of a subarea
* by adding a new column in it, so in that
* situation we don't mind having as many odd
* subareas as there are spare columns.
*
* If the height is even, we can't fix it at all.
*/
{
int nerrs = 0, nfix = 0;
k = 0; /* current subarea size */
for (i = 0; i < w; i++) {
if (grid2[(h-1)*w+i] == 0) {
if (h % 2)
nfix++;
continue;
}
for (j = 0; j < h && grid2[j*w+i] == 0; j++);
assert(j < h);
if (j == 0) {
/*
* End of previous subarea.
*/
if (k % 2)
nerrs++;
k = 0;
} else {
k += j;
}
}
if (k % 2)
nerrs++;
if (nerrs > nfix)
continue; /* try a different placement */
}
/*
* We've made a move. Verify that it is a valid
* move and that if made it would indeed yield the
* previous grid state. The criteria are:
*
* (a) removing all the squares of colour tc (and
* shuffling the columns up etc) from grid2
* would yield grid
* (b) no square of colour tc is adjacent to one
* of colour c
* (c) all the squares of colour tc form a single
* connected component
*
* We verify the latter property at the same time
* as checking that removing all the tc squares
* would yield the previous grid. Then we colour
* the tc squares in colour c by breadth-first
* search, which conveniently permits us to test
* that they're all connected.
*/
{
int x1, x2, y1, y2;
bool ok = true;
int fillstart = -1, ntc = 0;
#ifdef GENERATION_DIAGNOSTICS
{
int x,y;
printf("testing move (new, old):\n");
for (y = 0; y < h; y++) {
for (x = 0; x < w; x++) {
if (grid2[y*w+x] == 0)
printf("-");
else if (grid2[y*w+x] <= nc)
printf("%d", grid2[y*w+x]);
else
printf("*");
}
printf(" ");
for (x = 0; x < w; x++) {
if (grid[y*w+x] == 0)
printf("-");
else
printf("%d", grid[y*w+x]);
}
printf("\n");
}
}
#endif
for (x1 = x2 = 0; x2 < w; x2++) {
bool usedcol = false;
for (y1 = y2 = h-1; y2 >= 0; y2--) {
if (grid2[y2*w+x2] == tc) {
ntc++;
if (fillstart == -1)
fillstart = y2*w+x2;
if ((y2+1 < h && grid2[(y2+1)*w+x2] == c) ||
(y2-1 >= 0 && grid2[(y2-1)*w+x2] == c) ||
(x2+1 < w && grid2[y2*w+x2+1] == c) ||
(x2-1 >= 0 && grid2[y2*w+x2-1] == c)) {
#ifdef GENERATION_DIAGNOSTICS
printf("adjacency failure at %d,%d\n",
x2, y2);
#endif
ok = false;
}
continue;
}
if (grid2[y2*w+x2] == 0)
break;
usedcol = true;
if (grid2[y2*w+x2] != grid[y1*w+x1]) {
#ifdef GENERATION_DIAGNOSTICS
printf("matching failure at %d,%d vs %d,%d\n",
x2, y2, x1, y1);
#endif
ok = false;
}
y1--;
}
/*
* If we've reached the top of the column
* in grid2, verify that we've also reached
* the top of the column in `grid'.
*/
if (usedcol) {
while (y1 >= 0) {
if (grid[y1*w+x1] != 0) {
#ifdef GENERATION_DIAGNOSTICS
printf("junk at column top (%d,%d)\n",
x1, y1);
#endif
ok = false;
}
y1--;
}
}
if (!ok)
break;
if (usedcol)
x1++;
}
if (!ok) {
assert(!"This should never happen");
/*
* If this game is compiled NDEBUG so that
* the assertion doesn't bring it to a
* crashing halt, the only thing we can do
* is to give up, loop round again, and
* hope to randomly avoid making whatever
* type of move just caused this failure.
*/
continue;
}
/*
* Now use bfs to fill in the tc section as
* colour c. We use `list' to store the set of
* squares we have to process.
*/
i = j = 0;
assert(fillstart >= 0);
list[i++] = fillstart;
#ifdef OUTPUT_SOLUTION
printf("M");
#endif
while (j < i) {
k = list[j];
x = k % w;
y = k / w;
#ifdef OUTPUT_SOLUTION
printf("%s%d", j ? "," : "", k);
#endif
j++;
assert(grid2[k] == tc);
grid2[k] = c;
if (x > 0 && grid2[k-1] == tc)
list[i++] = k-1;
if (x+1 < w && grid2[k+1] == tc)
list[i++] = k+1;
if (y > 0 && grid2[k-w] == tc)
list[i++] = k-w;
if (y+1 < h && grid2[k+w] == tc)
list[i++] = k+w;
}
#ifdef OUTPUT_SOLUTION
printf("\n");
#endif
/*
* Check that we've filled the same number of
* tc squares as we originally found.
*/
assert(j == ntc);
}
memcpy(grid, grid2, wh * sizeof(int));
break; /* done it! */
}
#ifdef GENERATION_DIAGNOSTICS
{
int x,y;
printf("n=%d\n", n);
for (y = 0; y < h; y++) {
for (x = 0; x < w; x++) {
if (grid[y*w+x] == 0)
printf("-");
else
printf("%d", grid[y*w+x]);
}
printf("\n");
}
}
#endif
if (n < 0)
break;
}
ok = true;
for (i = 0; i < wh; i++)
if (grid[i] == 0) {
ok = false;
failures++;
#if defined GENERATION_DIAGNOSTICS || defined SHOW_INCOMPLETE
{
int x,y;
printf("incomplete grid:\n");
for (y = 0; y < h; y++) {
for (x = 0; x < w; x++) {
if (grid[y*w+x] == 0)
printf("-");
else
printf("%d", grid[y*w+x]);
}
printf("\n");
}
}
#endif
break;
}
} while (!ok);
#if defined GENERATION_DIAGNOSTICS || defined COUNT_FAILURES
printf("%d failures\n", failures);
#endif
#ifdef GENERATION_DIAGNOSTICS
{
int x,y;
printf("final grid:\n");
for (y = 0; y < h; y++) {
for (x = 0; x < w; x++) {
printf("%d", grid[y*w+x]);
}
printf("\n");
}
}
#endif
sfree(grid2);
sfree(list);
}
/*
* Not-guaranteed-soluble grid generator; kept as a legacy, and in
* case someone finds the slightly odd quality of the guaranteed-
* soluble grids to be aesthetically displeasing or finds its CPU
* utilisation to be excessive.
*/
static void gen_grid_random(int w, int h, int nc, int *grid, random_state *rs)
{
int i, j, c;
int n = w * h;
for (i = 0; i < n; i++)
grid[i] = 0;
/*
* Our sole concession to not gratuitously generating insoluble
* grids is to ensure we have at least two of every colour.
*/
for (c = 1; c <= nc; c++) {
for (j = 0; j < 2; j++) {
do {
i = (int)random_upto(rs, n);
} while (grid[i] != 0);
grid[i] = c;
}
}
/*
* Fill in the rest of the grid at random.
*/
for (i = 0; i < n; i++) {
if (grid[i] == 0)
grid[i] = (int)random_upto(rs, nc)+1;
}
}
static char *new_game_desc(const game_params *params, random_state *rs,
char **aux, bool interactive)
{
char *ret;
int n, i, retlen, *tiles;
n = params->w * params->h;
tiles = snewn(n, int);
if (params->soluble)
gen_grid(params->w, params->h, params->ncols, tiles, rs);
else
gen_grid_random(params->w, params->h, params->ncols, tiles, rs);
ret = NULL;
retlen = 0;
for (i = 0; i < n; i++) {
char buf[80];
int k;
k = sprintf(buf, "%d,", tiles[i]);
ret = sresize(ret, retlen + k + 1, char);
strcpy(ret + retlen, buf);
retlen += k;
}
ret[retlen-1] = '\0'; /* delete last comma */
sfree(tiles);
return ret;
}
static const char *validate_desc(const game_params *params, const char *desc)
{
int area = params->w * params->h, i;
const char *p = desc;
for (i = 0; i < area; i++) {
const char *q = p;
int n;
if (!isdigit((unsigned char)*p))
return "Not enough numbers in string";
while (isdigit((unsigned char)*p)) p++;
if (i < area-1 && *p != ',')
return "Expected comma after number";
else if (i == area-1 && *p)
return "Excess junk at end of string";
n = atoi(q);
if (n < 0 || n > params->ncols)
return "Colour out of range";
if (*p) p++; /* eat comma */
}
return NULL;
}
static game_state *new_game(midend *me, const game_params *params,
const char *desc)
{
game_state *state = snew(game_state);
const char *p = desc;
int i;
state->params = *params; /* struct copy */
state->n = state->params.w * state->params.h;
state->tiles = snewn(state->n, int);
for (i = 0; i < state->n; i++) {
assert(*p);
state->tiles[i] = atoi(p);
while (*p && *p != ',')
p++;
if (*p) p++; /* eat comma */
}
state->complete = false;
state->impossible = false;
state->score = 0;
return state;
}
static game_state *dup_game(const game_state *state)
{
game_state *ret = snew(game_state);