-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathDEClustering.m
93 lines (88 loc) · 2.04 KB
/
DEClustering.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
%% Starting DE Clustering
clear;
warning('off');
% Loading
X = load("iris.csv");
%
k = 3; % Number of Clusters
%
CostFunction=@(m) ClusterCost(m, X); % Cost Function
VarSize=[k size(X,2)]; % Decision Variables Matrix Size
nVar=prod(VarSize); % Number of Decision Variables
VarMin= repmat(min(X),k,1); % Lower Bound of Variables
VarMax= repmat(max(X),k,1); % Upper Bound of Variables
% DE Parameters
MaxIt=100; % Maximum Iterations
nPop=30; % Population Size
%
beta_min=0.2; % Lower Bound of Scaling Factor
beta_max=0.8; % Upper Bound of Scaling Factor
pCR=0.2; % Crossover Probability
tic
% Start
empty_individual.Position=[];
empty_individual.Cost=[];
empty_individual.Out=[];
BestSol.Cost=inf;
pop=repmat(empty_individual,nPop,1);
for i=1:nPop
pop(i).Position=unifrnd(VarMin,VarMax,VarSize);
[pop(i).Cost, pop(i).Out]=CostFunction(pop(i).Position);
if pop(i).Cost<BestSol.Cost
BestSol=pop(i);
end
end
BestRes=zeros(MaxIt,1);
% DE Body
for it=1:MaxIt
for i=1:nPop
x=pop(i).Position;
A=randperm(nPop);
A(A==i)=[];
a=A(1);
b=A(2);
c=A(3);
% Mutation
beta=unifrnd(beta_min,beta_max,VarSize);
y=pop(a).Position+beta.*(pop(b).Position-pop(c).Position);
y=max(y,VarMin);
y=min(y,VarMax);
% Crossover
z=zeros(size(x));
j0=randi([1 numel(x)]);
for j=1:numel(x)
if j==j0 || rand<=pCR
z(j)=y(j);
else
z(j)=x(j);
end
end
NewSol.Position=z;
[NewSol.Cost, NewSol.Out]=CostFunction(NewSol.Position);
if NewSol.Cost<pop(i).Cost
pop(i)=NewSol;
if pop(i).Cost<BestSol.Cost
BestSol=pop(i);
end
end
end
% Update Best Cost
BestCost(it)=BestSol.Cost;
% Iteration
disp(['In Iteration' num2str(it) ': DE Cost Is = ' num2str(BestCost(it))]);
end
% Features
f1=1;
f2=3;
figure(1);
PlotRes(X, BestSol,f1,f2);
% ITR
figure;
plot(BestCost,'k','LineWidth',2);
xlabel('Iteration');
ylabel('Best Cost');
ax = gca;
ax.FontSize = 12;
ax.FontWeight='bold';
grid on;
toc