-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathFATSP.m
130 lines (104 loc) · 2.79 KB
/
FATSP.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
clc;
clear;
close all;
%% Problem
x=[13 25 91 86 66 87 50 22 19 3 67 86 52 5 21 65 14 88 70 40];
y=[19 28 37 100 10 32 56 97 47 27 43 39 89 5 79 56 1 21 18 20];
model=MakeModel(x,y);
tic
CostFunction=@(s) CostF(s,model); % Cost Function
nVar=model.n; % Number of Decision Variables
VarSize=[1 nVar]; % Decision Variables Matrix Size
VarMin=0; % Lower Bound of Variables
VarMax=1; % Upper Bound of Variables
%% Firefly Algorithm Parameters
MaxIt = 200; % Maximum Number of Iterations
nPop = 50; % Number of Fireflies (Swarm Size)
gamma = 2; % Light Absorption Coefficient
beta0 = 4; % Attraction Coefficient Base Value
alpha = 0.2; % Mutation Coefficient
alpha_damp = 0.98; % Mutation Coefficient Damping Ratio
delta = 0.05*(VarMax-VarMin); % Uniform Mutation Range
m = 2;
if isscalar(VarMin) && isscalar(VarMax)
dmax = (VarMax-VarMin)*sqrt(nVar);
else
dmax = norm(VarMax-VarMin);
end
%% Start
% Empty Firefly Structure
firefly.Position = [];
firefly.Cost = [];
firefly.Sol = [];
% Initialize Population Array
pop = repmat(firefly, nPop, 1);
% Initialize Best Solution Ever Found
BestSol.Cost = inf;
% Create Initial Fireflies
for i = 1:nPop
pop(i).Position = unifrnd(VarMin, VarMax, VarSize);
[pop(i).Cost pop(i).Sol] = CostFunction(pop(i).Position);
if pop(i).Cost <= BestSol.Cost
BestSol = pop(i);
end
end
% Array to Hold Best Cost Values
BestCost = zeros(MaxIt, 1);
%% Firefly Algorithm Main Loop
for it = 1:MaxIt
newpop = repmat(firefly, nPop, 1);
for i = 1:nPop
newpop(i).Cost = inf;
for j = 1:nPop
if pop(j).Cost < pop(i).Cost
rij = norm(pop(i).Position-pop(j).Position)/dmax;
beta = beta0*exp(-gamma*rij^m);
e = delta*unifrnd(-1, +1, VarSize);
%e = delta*randn(VarSize);
newsol.Position = pop(i).Position ...
+ beta*rand(VarSize).*(pop(j).Position-pop(i).Position) ...
+ alpha*e;
newsol.Position = max(newsol.Position, VarMin);
newsol.Position = min(newsol.Position, VarMax);
[newsol.Cost newsol.Sol] = CostFunction(newsol.Position);
if newsol.Cost <= newpop(i).Cost
newpop(i) = newsol;
if newpop(i).Cost <= BestSol.Cost
BestSol = newpop(i);
end
end
end
end
end
% Merge
pop = [pop
newpop]; %#ok
% Sort
[~, SortOrder] = sort([pop.Cost]);
pop = pop(SortOrder);
% Truncate
pop = pop(1:nPop);
% Store Best Cost Ever Found
BestCost(it) = BestSol.Cost;
% Show Iteration Information
disp(['Iteration ' num2str(it) ': Best Cost = ' num2str(BestCost(it))]);
% Damp Mutation Coefficient
alpha = alpha*alpha_damp;
% Plot Res
figure(1);
Plotfig(BestSol.Sol.tour,model);
end
toc
time=toc
%% ITR
% figure(1);
% Plotfig(BestSol.Sol.tour,model);
figure;
plot(BestCost,'k', 'LineWidth', 2);
xlabel('ITR');
ylabel('Cost Value');
ax = gca;
ax.FontSize = 14;
ax.FontWeight='bold';
set(gca,'Color','c')
grid on;