-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathgen_ddp_n8.py
284 lines (188 loc) · 9.77 KB
/
gen_ddp_n8.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import os
import sys
import fitsio
import argparse
import runtime
import numpy as np
import matplotlib.pyplot as plt
from astropy.table import Table, vstack
from scipy.spatial import KDTree
from delta8_limits import delta8_tier, d8_limits
from findfile import findfile, fetch_fields, overwrite_check, gather_cat, write_desitable, fetch_header
from config import Configuration
from bitmask import lumfn_mask, consv_mask, update_bit
from delta8_limits import d8_limits
from runtime import calc_runtime
from params import fillfactor_threshold, oversample_nrealisations, sphere_radius
parser = argparse.ArgumentParser(description='Generate DDP1 N8 for all gold galaxies.')
parser.add_argument('--log', help='Create a log file of stdout.', action='store_true')
parser.add_argument('-d', '--dryrun', help='Dryrun.', action='store_true')
parser.add_argument('-s', '--survey', help='Select survey', default='gama')
parser.add_argument('--realz', help='Realization', default=0, type=int)
parser.add_argument('--oversample', help='Oversample', default=2, type=int)
parser.add_argument('--oversample_nrealisations', help='Oversample realization number', default=None)
parser.add_argument('--nooverwrite', help='Do not overwrite outputs if on disk', action='store_true')
args = parser.parse_args()
log = args.log
realz = args.realz
dryrun = args.dryrun
survey = args.survey.lower()
oversample = args.oversample
if args.oversample_nrealisations != None:
oversample_nrealisations = int(args.oversample_nrealisations)
print(f'Overriding number of oversampled realizations used with {oversample_nrealisations}')
fields = fetch_fields(survey)
fpath = findfile(ftype='ddp', dryrun=dryrun, survey=survey)
opath = findfile(ftype='ddp_n8', dryrun=dryrun, survey=survey)
if log:
logfile = findfile(ftype='ddp_n8', dryrun=False, survey=survey, log=True)
print(f'Logging to {logfile}')
sys.stdout = open(logfile, 'w')
if args.nooverwrite:
overwrite_check(opath)
# Read ddp cat.
dat = Table.read(fpath)
print('Reading: {} with length {}'.format(fpath, len(dat)))
assert 'DDP1_DENS' in dat.meta
points = np.c_[dat['CARTESIAN_X'], dat['CARTESIAN_Y'], dat['CARTESIAN_Z']]
points = np.array(points, copy=True)
kd_tree_all = KDTree(points)
# Oversampled randoms
prefix = 'randoms_ddp1'
dat['RAND_N8'] = 0.
for realz in np.arange(oversample_nrealisations):
print(f'\n\nSolving for galaxy fillfactors with oversampled realization {realz}.')
rpaths = [findfile(ftype='randoms', dryrun=dryrun, field=ff, survey=survey, prefix=prefix, oversample=oversample, realz=realz) for ff in fields]
for rpath in rpaths:
print('Fetching: {}'.format(rpath))
orand = gather_cat(rpaths)
orpoints = np.c_[orand['CARTESIAN_X'], orand['CARTESIAN_Y'], orand['CARTESIAN_Z']]
print('Creating oversample rand. tree.')
obig_tree = KDTree(orpoints)
indexes_dat = kd_tree_all.query_ball_tree(obig_tree, r=8.)
dat['RAND_N8'] += np.array([len(idx) for idx in indexes_dat])
print('After solving for realization {}, median number of randoms per 8-sphere is {}'.format(realz, np.median(dat['RAND_N8'])))
del orand
del orpoints
del obig_tree
hpath = findfile(ftype='randoms_n8', dryrun=dryrun, field=fields[0], survey=survey, prefix=prefix, oversample=1, realz=0)
print(f'Fetching header information from {hpath}')
onrand8 = oversample_nrealisations * oversample * fetch_header(fpath=hpath, name='NRAND8')
ordens = oversample_nrealisations * oversample * fetch_header(fpath=hpath, name='RAND_DENS')
dat['FILLFACTOR'] = dat['RAND_N8'] / onrand8
print('Normalised galaxy fill factors with {:.2f} expected randoms per 8-sphere (density: {:.6e}).'.format(onrand8, ordens))
# ---- Find closest matching oversampled random to inherit bounddist ----
print('Finding bound dist measure.')
bpaths = [findfile(ftype='randoms_n8', dryrun=dryrun, field=ff, survey=survey, prefix=prefix) for ff in fields]
boundary = [Table.read(bpath, 'BOUNDARY') for bpath in bpaths]
# TODO Note: BOUNDID will not be unique.
boundary = vstack(boundary)
boundary = np.c_[boundary['CARTESIAN_X'], boundary['CARTESIAN_Y'], boundary['CARTESIAN_Z']]
boundary_tree = KDTree(boundary)
body = np.c_[dat['CARTESIAN_X'], dat['CARTESIAN_Y'], dat['CARTESIAN_Z']]
split = [x for x in body]
dd, ii = boundary_tree.query(split, k=1)
dat['BOUND_DIST'] = dd
dat['FILLFACTOR'][dat['BOUND_DIST'] > sphere_radius] = 1.
# ---- Find closest matching random to inherit fill factor ----
# Read randoms bound_dist.
rpaths = [findfile(ftype='randoms_bd', dryrun=dryrun, field=ff, survey=survey, prefix=prefix, oversample=1, realz=0) for ff in fields]
for rpath in rpaths:
print('Reading: {}'.format(rpath))
rand = gather_cat(rpaths)
print('Retrieved galaxies for {}'.format(np.unique(dat['FIELD'].data)))
print('Retrieved randoms for {}'.format(np.unique(rand['FIELD'].data)))
for i, rpath in enumerate(rpaths):
dat.meta['RPATH_{}'.format(i)] = rpath
rpoints = np.c_[rand['CARTESIAN_X'], rand['CARTESIAN_Y'], rand['CARTESIAN_Z']]
print('Creating big rand. tree.')
big_tree = KDTree(rpoints)
print('Querying tree for closest rand.')
dd, ii = big_tree.query([x for x in points], k=1)
# Find closest random for bound_dist and fill factor.
# These randoms are split by field.
dat['rRANDSEP'] = dd
dat['rRANDMATCH'] = rand['RANDID'][ii]
dat['rBOUND_DIST'] = rand['BOUND_DIST'][ii]
dat['rFILLFACTOR'] = rand['FILLFACTOR'][ii]
update_bit(dat['IN_D8LUMFN'], lumfn_mask, 'FILLFACTOR', dat['FILLFACTOR'].data < fillfactor_threshold)
if not dryrun:
match_sep = 6.5
# Typically, bounded by 1.6
# assert np.all(dat['rRANDSEP'].data < match_sep), 'Failed to find matching random with < 5 Mpc/h separation.'
if not np.all(dat['rRANDSEP'].data < match_sep):
# Note: DESI randoms are less dense, larger expected separation.
print('WARNING: poor random match, with maximum comoving random separation >3Mpc/h.')
poor_match = dat['rRANDSEP'].data > match_sep
print(dat[poor_match])
# ---- Calculate DDPX_N8 for each gama gold galaxy. ----
for idx in range(3):
# Calculate DDP1/2/3 N8 for all gold galaxies.
ddp_idx = idx + 1
dat['DDP{:d}_N8'.format(ddp_idx)] = -99
for field in fields:
print('Building tree for DDP {} and field {}'.format(ddp_idx, field))
in_field = dat['FIELD'] == field
dat_field = dat[in_field]
ddp = dat_field[dat_field['DDP'][:,idx] == 1]
points_ddp = np.c_[ddp['CARTESIAN_X'], ddp['CARTESIAN_Y'], ddp['CARTESIAN_Z']]
points_ddp = np.array(points_ddp, copy=True)
kd_tree_ddp = KDTree(points_ddp)
print('Querying tree for DDP {}'.format(ddp_idx))
indexes_ddp = kd_tree_all.query_ball_tree(kd_tree_ddp, r=8.)
counts = np.array([len(idx) for idx in indexes_ddp])
dat['DDP{:d}_N8'.format(ddp_idx)][in_field] = counts[in_field]
## Derived.
dat.meta['VOL8'] = (4./3.)*np.pi*(8.**3.)
dat['DDP1_DELTA8'] = ((dat['DDP1_N8'] / (dat.meta['VOL8'] * dat.meta['DDP1_DENS']) / dat['FILLFACTOR'])) - 1.
##
outwith = (dat['ZSURV'] > dat.meta['DDP1_ZMIN']) & (dat['ZSURV'] < dat.meta['DDP1_ZMAX'])
outwith = ~outwith
if not dryrun:
# Insufficient randoms in a dryrun.
outwith = outwith | (dat['FILLFACTOR'] < fillfactor_threshold)
dat['DDP1_DELTA8'][outwith] = -99.
dat['DDP1_DELTA8_TIER'] = delta8_tier(dat['DDP1_DELTA8'])
dat.pprint()
# TODO: Check
if 'ddp1' not in prefix:
dat['DDP2_DELTA8'] = ((dat['DDP2_N8'] / (dat.meta['VOL8'] * dat.meta['DDP2_DENS']) / dat['FILLFACTOR'])) - 1.
dat['DDP3_DELTA8'] = ((dat['DDP3_N8'] / (dat.meta['VOL8'] * dat.meta['DDP3_DENS']) / dat['FILLFACTOR'])) - 1.
for x in dat.meta.keys():
print('{}\t\t{}'.format(x.ljust(20), dat.meta[x]))
print('Writing {}'.format(opath))
write_desitable(opath, dat)
# ---- Generate ddp_n8_d0 files for LF(d8) files, limited to DDP1 (and redshift range) ----
dat = dat[(dat['ZSURV'] > dat.meta['DDP1_ZMIN']) & (dat['ZSURV'] < dat.meta['DDP1_ZMAX'])]
dat['DDP1_DELTA8_TIER'] = delta8_tier(dat['DDP1_DELTA8'])
utiers = np.unique(dat['DDP1_DELTA8_TIER'].data)
if -99 in utiers:
utiers = utiers.tolist()
utiers.remove(-99)
utiers = np.array(utiers)
for ii, xx in enumerate(d8_limits):
dat.meta['D8{}LIMS'.format(ii)] = str(xx)
if not np.all(np.isin(np.arange(9), utiers)):
print('WARNING: MISSING d8 TIERS ({})'.format(utiers))
else:
print(utiers)
print('Delta8 spans {:.4f} to {:.4f} over {} tiers.'.format(dat['DDP1_DELTA8'].min(), dat['DDP1_DELTA8'].max(), utiers))
for tier in np.arange(len(d8_limits)):
print()
print('---- d{} ----'.format(tier))
isin = (dat['DDP1_DELTA8_TIER'].data == tier)
to_write = dat[isin]
dat.meta['DDP1_D{}_NGAL'.format(tier)] = len(to_write)
assert 'AREA' in dat.meta.keys()
assert 'AREA' in to_write.meta.keys()
print('Available fields in tier: {}'.format(np.unique(dat['FIELD'].data)))
for field in fields:
isin = to_write['FIELD'] == field
to_write_field = to_write[isin]
opath_field = findfile('ddp_n8_d0', dryrun=dryrun, field=field, utier=tier, survey=survey, realz=realz)
print('Writing {} galaxies from field {} to {}.'.format(len(to_write_field), np.unique(to_write_field['FIELD'].data), opath_field))
to_write_field.meta['AREA'] = to_write.meta['AREA'] / len(fields)
write_desitable(opath_field, to_write_field)
print('\n\nDone.\n\n')
if log:
sys.stdout.close()