-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathgen_gold_lf.py
303 lines (205 loc) · 11.9 KB
/
gen_gold_lf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import os
import sys
import yaml
import runtime
import argparse
import pylab as pl
import numpy as np
import astropy.io.fits as fits
from astropy.table import Table, vstack
from vmaxer import vmaxer, vmaxer_rand
from lumfn import lumfn
from lumfn_stepwise import lumfn_stepwise
from schechter import schechter, named_schechter, ref_schechter
from renormalise_d8LF import renormalise_d8LF
from delta8_limits import d8_limits
from config import Configuration
from findfile import findfile, fetch_fields, overwrite_check, gather_cat, call_signature, write_desitable, fetch_header
from jackknife_limits import solve_jackknife, set_jackknife, jackknife_mean
from bitmask import update_bit, lumfn_mask
from params import fillfactor_threshold
from runtime import calc_runtime
def process_cat(fpath, vmax_opath, survey='gama', extra_cols=[], bitmasks=['IN_D8LUMFN'], fillfactor=False, conservative=False, tier=None, d8=None, fdelta=None, fdelta_zp=None):
opath = vmax_opath
if not os.path.isfile(fpath):
# Do not crash and burn, but proceed on gracefully.
print('WARNING: Failed to find {}'.format(fpath))
return 1
zmax = Table.read(fpath)
if len(zmax) == 0:
print('Zero length catalogue, nothing to be done.')
return -99
minz = zmax['ZSURV'].min()
maxz = zmax['ZSURV'].max()
print('Found redshift limits: {:.3f} < z < {:.3f}'.format(minz, maxz))
update_bit(zmax['IN_D8LUMFN'], lumfn_mask, 'FILLFACTOR', zmax['FILLFACTOR'].data < fillfactor_threshold)
vmax = vmaxer(zmax, minz, maxz, fillfactor=fillfactor, bitmasks=bitmasks, extra_cols=extra_cols, tier=tier)
vmax.meta['EXTNAME'] = 'VMAX'
print('Writing {}.'.format(opath))
write_desitable(opath, vmax)
## Luminosity function estimate
result = lumfn(vmax, d8=d8)
## Stepwise luminosity function estimate
result_stepwise = lumfn_stepwise(vmax, d8=d8)
'''
if fdelta != None:
result_stepwise = renormalise_d8LF(tier, result_stepwise, fdelta, fdelta_zp, self_count=True)
'''
## Reference Schechter - finer binning
ref_result = ref_schechter(d8=d8)
## Write.
opath = opath.replace('vmax', 'lumfn')
print(f'Writing {opath}')
header = fits.Header()
hx = fits.HDUList()
hx.append(fits.PrimaryHDU(header=header))
hx.append(fits.convenience.table_to_hdu(result))
hx.append(fits.convenience.table_to_hdu(result_stepwise))
hx.append(fits.convenience.table_to_hdu(ref_result))
hx.writeto(opath, overwrite=True)
return 0
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Generate Gold luminosity function.')
parser.add_argument('--log', help='Create a log file of stdout.', action='store_true')
parser.add_argument('--field', type=str, help='Select equatorial GAMA field: G9, G12, G15', default='G9')
parser.add_argument('--survey', help='Select survey', default='gama')
parser.add_argument('--density_split', help='Trigger density split luminosity function.', action='store_true')
parser.add_argument('--dryrun', action='store_true', help='dryrun.')
parser.add_argument('--nooverwrite', help='Do not overwrite outputs if on disk', action='store_true')
parser.add_argument('--jackknife', help='Apply jack knife.', action='store_true')
parser.add_argument('--conservative', help='Conservative analysis choices', action='store_true')
args = parser.parse_args()
log = args.log
field = args.field.upper()
dryrun = args.dryrun
survey = args.survey
density_split = args.density_split
jackknife = args.jackknife
conservative = args.conservative
if not density_split:
if log:
logfile = findfile(ftype='lumfn', dryrun=False, survey=survey, log=True)
print(f'Logging to {logfile}')
sys.stdout = open(logfile, 'w')
print('Generating Gold reference LF.')
call_signature(dryrun, sys.argv)
# Bounded by gama gold, reference schechter limits:
# 0.039 < z < 0.263.
# Note: not split by field.
fpath = findfile(ftype='ddp_n8', dryrun=dryrun, survey=survey)
opath = findfile(ftype='vmax', dryrun=dryrun, survey=survey)
if args.nooverwrite:
overwrite_check(opath)
print(f'Reading: {fpath}')
print(f'Writing: {opath}')
process_cat(fpath, opath, survey=survey, fillfactor=True)
if jackknife:
vmax = Table.read(opath)
rand_vmax = vmaxer_rand(survey=survey, ftype='randoms_bd_ddp_n8', dryrun=dryrun, prefix=prefix, conservative=conservative, write=False)
# Solve for jack knife limits.
njack, jk_volfrac, limits, jks = solve_jackknife(rand_vmax)
rand_vmax['JK'] = jks
rand_vmax.meta['NJACK'] = njack
rand_vmax.meta['JK_VOLFRAC'] = jk_volfrac
# Set jack knife limits to data.
vmax['JK'] = set_jackknife(vmax['RA'], vmax['DEC'], limits=limits, debug=False)
vmax.meta['NJACK'] = njack
vmax.meta['JK_VOLFRAC'] = jk_volfrac
# Save jack knife limits.
jpath = findfile(ftype='jackknife', prefix=prefix, dryrun=dryrun)
with open(jpath, 'w') as ofile:
yaml.dump(dict(limits), ofile, default_flow_style=False)
print(f'Writing: {jpath}')
lpath = findfile(ftype='lumfn', dryrun=dryrun, survey=survey, prefix=prefix)
jackknife = np.arange(njack)
lumfn(vmax, jackknife=jackknife, opath=lpath)
print(f'Written {lpath}')
jackknife_mean(lpath)
print('Done.')
if log:
sys.stdout.close()
else:
if log:
# HACK
logfile = findfile(ftype='ddp_n8_d0_vmax', dryrun=False, field=field, survey=survey, log=True).replace('vmax', 'lumfn').replace('_{utier}', '')
print(f'Logging to {logfile}')
sys.stdout = open(logfile, 'w')
print('Generating Gold density-split LF.')
call_signature(dryrun, sys.argv)
assert field != None
if dryrun:
# A few galaxies have a high probability to be in highest density only.
utiers = np.array([8])
else:
utiers = np.arange(len(d8_limits))
rand_vmax_all = None
for idx in utiers:
print(f'\n\n\n\n---------------- Solving for density tier {idx} ----------------\n\n')
# Bounded by DDP1 z limits.
ddp_fpath = findfile(ftype='ddp_n8_d0', dryrun=dryrun, field=field, survey=survey, utier=idx)
ddp_opath = findfile(ftype='ddp_n8_d0_vmax', dryrun=dryrun, field=field, survey=survey, utier=idx)
print()
print('Reading: {}'.format(ddp_fpath))
prefix = 'randoms_ddp1'
rpath = findfile(ftype='randoms_bd_ddp_n8', dryrun=dryrun, field=field, survey=survey, prefix=prefix)
## Used for multi-field avg. of d8 lfs.
fdelta_field = fetch_header(fpath=rpath, name='DDP1_d{}_VOLFRAC'.format(idx))
if rand_vmax_all == None:
print('Calculating multi-field volume fractions.')
rand_vmax_all = vmaxer_rand(survey=survey, ftype='randoms_bd_ddp_n8', dryrun=dryrun, prefix=prefix, conservative=conservative, write=False)
fdelta = float(rand_vmax_all.meta['DDP1_d{}_VOLFRAC'.format(idx)])
fdelta_zp = float(rand_vmax_all.meta['DDP1_d{}_ZEROPOINT_VOLFRAC'.format(idx)])
d8 = float(rand_vmax_all.meta['DDP1_d{}_TIERMEDd8'.format(idx)])
d8_zp = float(rand_vmax_all.meta['DDP1_d{}_ZEROPOINT_TIERMEDd8'.format(idx)])
rand_vmax = rand_vmax_all[rand_vmax_all['DDP1_DELTA8_TIER'] == idx]
failure = process_cat(ddp_fpath, ddp_opath, fillfactor=True, tier=idx, d8=d8, fdelta=fdelta, fdelta_zp=fdelta_zp)
print('LF process cat. complete.')
if failure == -99:
# Zero length (dryrun) catalog, nothing to be done.
continue
if jackknife:
print('Solving for jack knife limits.')
njack, jk_volfrac, limits, jks = solve_jackknife(rand_vmax)
rand_vmax['JK'] = jks
rand_vmax.meta['NJACK'] = njack
rand_vmax.meta['JK_VOLFRAC'] = jk_volfrac
print('Setting data jack knife limits.')
vmax_path = findfile(ftype='ddp_n8_d0_vmax', dryrun=dryrun, field=field, utier=idx, survey=survey)
vmax = Table.read(vmax_path, format='fits')
vmax['JK'] = set_jackknife(vmax['RA'], vmax['DEC'], limits=limits, debug=False)
vmax.meta['NJACK'] = njack
vmax.meta['JK_VOLFRAC'] = jk_volfrac
for ii in np.arange(1,2,1):
# Fraction of DDP1 volume meeting completeness cut.
vmax.meta['DDP1_FULL8FRAC'] = rand_vmax_all.meta['DDP1_FULL8FRAC']
print('Writing jack knife limits yaml')
jpath = findfile(ftype='jackknife', prefix=prefix, dryrun=dryrun)
with open(jpath, 'w') as jfile:
yaml.dump(dict(limits), jfile, default_flow_style=False)
jackknife = np.arange(njack)
print('Solving for jacked up luminosity functions.')
lumfn(vmax, jackknife=jackknife, opath=lpath)
print('Solving for jacked up luminosity function mean.')
jackknife_mean(lpath)
# Reload result with JK columns.
result = Table.read(lpath)
with fits.open(lpath, mode='update') as hdulist:
assert hdulist[1].header['EXTNAME'] == 'LUMFN'
hdulist[1] = result_hdu
for i, hdu in enumerate(hdulist):
hdr = hdu.header
if 'EXTNAME' not in hdu.header:
continue
if 'JK' in hdu.header['EXTNAME']:
extname = hdu.header['EXTNAME']
print(f'Updating {extname}')
result_jk = Table(hdu.data, names=hdu.data.names)
result_jk = renormalise_d8LF(idx, result_jk, fdelta, fdelta_zp, self_count)
result_jk = fits.BinTableHDU(result_jk, name=extname, header=hdr)
hdulist[i] = result_jk
hdulist.append(ref_result_hdu)
hdulist.flush()
hdulist.close()
print('Done.')
if log:
sys.stdout.close()