-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathlumfn_stepwise.py
311 lines (214 loc) · 10.2 KB
/
lumfn_stepwise.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import os
import sys
import time
import tqdm
import argparse
import numpy as np
import multiprocessing
from runtime import calc_runtime
from functools import partial
from multiprocessing import Pool
from astropy.table import Table
from findfile import findfile, overwrite_check, write_desitable
from schechter import named_schechter
from ddp import initialise_ddplimits
from ddp_limits import limiting_curve_path
from ddp_zlimits import ddp_zlimits
from params import fillfactor_threshold
from schechter import named_schechter
def lum_binner(x, dM):
'''
Eqn. 2.10a, W(x), of Efstathiou, Ellis & Peterson.
'''
return np.abs(x) <= (dM / 2.)
def lum_visible(x, dM):
'''
Eqn. 2.10b, H(x), of Efstathiou, Ellis & Peterson.
Note:
Not currently used.
'''
result = -x/dM + 1./2.
result[x >= (dM / 2.)] = 0.0
result[x <= -(dM / 2.)] = 1.0
return result
def process_one(split, Mmins, Mmaxs, dM, phi_Ms, phis):
'''
Stepwise (1 / <n> @ z, rest gmr, etc.) weights for each split.
'''
weights = []
Mmins = np.array(Mmins[split], copy=True)
Mmaxs = np.array(Mmaxs[split], copy=True)
for i in np.arange(len(Mmins)):
Mmin = Mmins[i]
Mmax = Mmaxs[i]
isin = (phi_Ms >= Mmin) & (phi_Ms <= Mmax)
assert np.count_nonzero(isin)
# 1 / <n> weight.
nbar = dM * np.sum(phis[isin])
weight = 1. / nbar
weights.append(weight)
# print(Mmin, Mmax, weight)
weights = np.array(weights)
return weights.tolist()
def lumfn_stepwise_eval(vmax, dM, phi_M, phi, phi_Ms, phis, Mcol='MCOLOR_0P0', survey='gama', nproc=12):
'''
Eqn. 2.12, of Efstathiou, Ellis & Peterson.
'''
print(f'\n\n---------- Solving for phi_M {phi_M} ----------')
# Fortran indexing, 1 .. 7 inclusive.
# vmax.sort('REST_GMR_0P1_INDEX')
# HACK: Color independent
# vmax['REST_GMR_0P1_INDEX'] = 1
# MCOLOR_0P0
Ms = vmax[Mcol]
uidxs = np.unique(vmax['REST_GMR_0P1_INDEX'].data)
# For each galaxy, namely rest frame gmr_0p1 and z, limiting MCOLOR_0P0 at the bright and faint ends.
Mmins = vmax['STEPWISE_BRIGHTLIM_0P0']
Mmaxs = vmax['STEPWISE_FAINTLIM_0P0']
splits = []
split_idx = np.arange(len(vmax))
nums = []
# Unbalanced, poor performance for pool.
for uidx in uidxs:
# Solve for this color set.
isin = (vmax['REST_GMR_0P1_INDEX'].data == uidx)
isin &= (lum_binner(vmax[Mcol] - phi_M, dM))
num = np.count_nonzero(isin)
nums.append(num)
if num == 0:
splits.append([])
else:
# print('{:d}\t{:d}\t{:.6f}\t{:.6f}'.format(uidx, num, vmax[Mcol][isin].min(), phi_M, vmax[Mcol][isin].max()))
# Volume limited sample for mag. phi_M and this rest-frame color.
sub = vmax[isin]
# Liberal limits.
Mmin = vmax[Mcol][isin].data.min()
Mmax = vmax[Mcol][isin].data.max()
# zmin = vmax['ZSURV'][isin].data.min()
# zmax = vmax['ZSURV'][isin].data.max()
zmin = vmax['ZMIN'][isin].data.min()
zmax = vmax['ZMAX'][isin].data.max()
print('{}\t{}\t{}\t{}\t{}\t{}'.format(phi_M, Mmin, Mmax, zmin, zmax, np.count_nonzero(isin)))
isin = (vmax['ZSURV'].data >= zmin) & (vmax['ZSURV'].data <= zmax)
splits.append(split_idx[isin])
results = []
with multiprocessing.get_context('spawn').Pool(nproc) as pool:
# For this phi_M, per rest frame color list of the stepwise (1/<n>) weight for all galaxies in the vol. limited sample.
for result in pool.imap(partial(process_one, Mmins=Mmins, Mmaxs=Mmaxs, dM=dM, phi_Ms=phi_Ms, phis=phis), iterable=splits):
results.append(np.array(result))
pool.close()
# https://stackoverflow.com/questions/38271547/when-should-we-call-multiprocessing-pool-join
pool.join()
'''
for split, result in zip(splits, results):
if len(split) > 0:
sub = vmax[split]
sub['NBAR'] = 1. / result
sub.sort('ZSURV')
sub['ZSURV', 'REST_GMR_0P1', 'REST_GMR_0P1_INDEX', 'MCOLOR_0P0', 'STEPWISE_BRIGHTLIM_0P0', 'STEPWISE_FAINTLIM_0P0', 'NBAR'].pprint()
'''
results = np.array([np.sum(x) for x in results])
nums = 1. * np.array(nums)
results[nums == 0.] = 1.
# dM * phis
phi_hat_nocolor = np.sum(nums) / np.sum(results)
# dM * phis
phi_hat = np.sum(nums / results)
print('{:.6f}\t{:.6e}\t{:.6f}\t{:.6e}\t{:.6e}\t{:.6e}'.format(phi_M, phi, np.sum(nums), np.sum(results), phi_hat_nocolor, phi_hat))
return phi_hat, np.sum(nums)
def lumfn_stepwise(vmax, Mcol='MCOLOR_0P0', tolerance=1.e-3, d8=None, normalise=True):
# Note: match lumfn binning.
nbins = 36
phi_Ms = np.linspace(-23., -16., nbins)
dM = np.abs(np.diff(phi_Ms)[0])
# Initialise phi estimates - uniform.
phi_inits = dM * named_schechter(phi_Ms + dM/2., named_type='TMR')
phis = phi_inits
norm = np.sum(phis)
if d8 != None:
norm *= (1. + d8) / (1. + 0.007)
iteration = 0
diff = 1.e99
# Remove anything not in the limits, as digitize returns 0, len(array) outwith.
isin = (vmax[Mcol] >= phi_Ms.min()) & (vmax[Mcol] <= phi_Ms.max())
vmax = vmax[isin]
while (diff > tolerance):
print('\n\n------------ Solving for iteration {:d} with diff. {:.6e} ------------'.format(iteration, diff))
nMs = []
new_phis = []
for i, (phi_M, phi) in enumerate(zip(phi_Ms, phis)):
phi_hat, nM = lumfn_stepwise_eval(vmax, dM, phi_M, phi, phi_Ms, phis, Mcol=Mcol)
nMs.append(nM)
new_phis.append(phi_hat)
nMs = np.array(nMs)
new_phis = np.array(new_phis)
# Update previous estimate.
if normalise:
_phis = norm * (new_phis / np.sum(new_phis))
else:
_phis = new_phis
print('\n\n------------ Solved for iteration {:d} ------------'.format(iteration))
for nM, phi_M, phi_init, phi, _phi in zip(nMs, phi_Ms, phi_inits, phis, _phis):
print('{:.3f}\t{:.6f}\t{:.6f}\t{:.6f}\t{:.6f}'.format(nM, phi_M, np.log10(phi_init), np.log10(phi), np.log10(_phi)))
diff = np.sum((_phis - phis)**2.)
phis = _phis
iteration += 1
if normalise:
isin = (nMs >= 5) & np.isfinite(phis)
norm = np.sum(phi_inits[isin])
if d8 != None:
norm *= (1. + d8) / (1. + 0.007)
# print(norm, np.sum(phis[isin]))
phis *= (norm / np.sum(phis[isin]))
phis = phis / dM
phi_Ms += dM/2.
# print('Final M={} recovers weights for all galaxies in vmax ({} weights for {} galaxies).'.format(phi_M, len(weights), len(vmax)))
result_stepwise = Table(np.c_[phi_Ms, phis, nMs], names=['MID_M', 'PHI_STEPWISE', 'N'])
result_stepwise['VALID'] = result_stepwise['N'] >= 5
result_stepwise['REF_SCHECHTER'] = named_schechter(result_stepwise['MID_M'], named_type='TMR')
if d8 != None:
# TODO HARDCODE 0.007
result_stepwise['REF_SCHECHTER'] *= (1. + d8) / (1. + 0.007)
result_stepwise['REF_RATIO'] = result_stepwise['PHI_STEPWISE'] / result_stepwise['REF_SCHECHTER']
result_stepwise.meta['DDP1_D8'] = d8
result_stepwise.meta['EXTNAME'] = 'LUMFN_STEP'
return result_stepwise
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Generate Gold stepwise luminosity function.')
parser.add_argument('--log', help='Create a log file of stdout.', action='store_true')
parser.add_argument('-s', '--survey', help='Select survey', default='gama')
parser.add_argument('--dryrun', help='Dryrun', action='store_true')
parser.add_argument('--nooverwrite', help='Do not overwrite outputs if on disk', action='store_true')
parser.add_argument('--version', help='Add version', default='GAMA4')
start = time.time()
args = parser.parse_args()
log = args.log
survey = args.survey
dryrun = args.dryrun
nooverwrite = args.nooverwrite
version = args.version
if log:
logfile = findfile(ftype='lumfn_step', dryrun=False, survey=survey, log=True)
print(f'Logging to {logfile}')
sys.stdout = open(logfile, 'w')
fpath = findfile('ddp', dryrun=dryrun, survey=survey, version=version)
opath = findfile('lumfn_step', dryrun=dryrun, survey=survey, version=version)
if nooverwrite:
overwrite_check(opath)
ddp = Table.read(fpath)
zlo = ddp_zlimits['DDP1'][0]
zhi = ddp_zlimits['DDP1'][1]
isin = (ddp['ZSURV'] >= zlo) & (ddp['ZSURV'] <= zhi)
ddp = ddp[isin]
ddp.pprint()
ddp['ZMIN'] = np.clip(ddp['ZMIN'], zlo, None)
ddp['ZMAX'] = np.clip(ddp['ZMAX'], None, zhi)
result = lumfn_stepwise(ddp)
'''
runtime = calc_runtime(start, 'Writing {}'.format(opath))
print(f'Writing {opath}')
write_desitable(opath, result)
'''
runtime = calc_runtime(start, 'Finished')
if log:
sys.stdout.close()