-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrenormalise_d8LF.py
43 lines (28 loc) · 1.25 KB
/
renormalise_d8LF.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import numpy as np
from astropy.table import Table
from ddp import tmr_DDP1
def renormalise_d8LF(idx, lf, fdelta, fdelta_zeropoint, self_count=False, Mcol='MID_M'):
'''
fscale equal to Equation 7 in McNaught-Roberts (2014).
See: https://arxiv.org/pdf/1409.4681.pdf
'''
print('Renormalising (IVMAX) LF with log10(fdelta)={:.6e} for tier {}'.format(np.log10(fdelta), idx))
lf = Table(lf, copy=True)
cols = ['PHI_N', 'PHI_N_ERROR', 'PHI_IVMAX', 'PHI_IVMAX_ERROR']
cols += ['PHI_IVMAX_JK', 'PHI_IVMAX_ERROR_JK']
cols += ['PHI_STEPWISE', 'REF_RATIO']
cols = [x for x in cols if x in lf.dtype.names]
print('Renormalising ...')
for col in cols:
print(f'\t{col}')
lf[col] /= fdelta
if self_count:
print('Applying log10|self-count correction| of {:.6f}'.format(np.log10(fdelta / fdelta_zeropoint)))
# tmr_DDP1: [-21.8, -20.1]
is_ddp1 = (lf[Mcol] > tmr_DDP1[0]) & (lf[Mcol] < tmr_DDP1[1])
for col in cols:
lf[col][is_ddp1] *= (fdelta / fdelta_zeropoint)
lf.meta['SELFCOUNT'] = self_count
lf.meta['DDP1_VOLFRAC'] = fdelta
lf.meta['DDP1_VOLFRAC_ZP'] = fdelta_zeropoint
return lf