-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
176 lines (140 loc) · 6.52 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import os
import time
import torch
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.data import Dataset
import cv2 as cv
import numpy as np
from config import LEARNING_RATE, EPOCHS, BATCH_SIZE, TRAIN_RATIO
class LandscapeDataset(Dataset):
def __init__(self, image_dir, device, train=True):
self.device = device
all_files = [os.path.join(image_dir, file) for file in os.listdir(image_dir)]
num_files = len(all_files)
cutoff = int(num_files * TRAIN_RATIO)
self.image_files = all_files[:cutoff] if train else all_files[cutoff:]
print(f"{'Train:' if train else 'Test: '} Found {len(self.image_files)} images at {image_dir}")
def __len__(self):
return len(self.image_files)
def __getitem__(self, idx):
color = cv.imread(self.image_files[idx])
lab = cv.cvtColor(color, cv.COLOR_BGR2LAB)
ab_trans = np.transpose(lab, (2, 0, 1))[1:]
ab_tensor = torch.tensor(ab_trans).float()
grey = cv.cvtColor(color, cv.COLOR_BGR2GRAY)
grey_exp = np.expand_dims(grey, axis=0)
grey_tensor = torch.tensor(grey_exp).float()
return grey_tensor.to(self.device), ab_tensor.to(self.device)
class NeuralNetwork(nn.Module):
def __init__(self):
super().__init__()
self.layers = nn.Sequential(
nn.Conv2d(1, 64, kernel_size=3, stride=1, padding=1, bias=True),
nn.ReLU(True),
nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1, bias=True),
nn.ReLU(True),
nn.BatchNorm2d(64),
nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1, bias=True),
nn.ReLU(True),
nn.Conv2d(128, 128, kernel_size=3, stride=2, padding=1, bias=True),
nn.ReLU(True),
nn.BatchNorm2d(128),
nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1, bias=True),
nn.ReLU(True),
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),
nn.ReLU(True),
nn.Conv2d(256, 256, kernel_size=3, stride=2, padding=1, bias=True),
nn.ReLU(True),
nn.BatchNorm2d(256),
nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1, bias=True),
nn.ReLU(True),
nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),
nn.ReLU(True),
nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),
nn.ReLU(True),
nn.BatchNorm2d(512),
nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),
nn.ReLU(True),
nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),
nn.ReLU(True),
nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),
nn.ReLU(True),
nn.BatchNorm2d(512),
nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),
nn.ReLU(True),
nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),
nn.ReLU(True),
nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),
nn.ReLU(True),
nn.BatchNorm2d(512),
nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),
nn.ReLU(True),
nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),
nn.ReLU(True),
nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),
nn.ReLU(True),
nn.BatchNorm2d(512),
nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1, bias=True),
nn.ReLU(True),
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),
nn.ReLU(True),
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),
nn.Softmax(dim=1),
nn.Conv2d(256, 2, kernel_size=1, padding=0, dilation=1, stride=1, bias=False),
nn.Upsample(scale_factor=4, mode='bilinear'),
)
def forward(self, x):
x = (x - 128) / 128.
logits = self.layers(x)
logits = (logits * 128.) + 128
return logits
def train_loop(dataloader, model, loss_fn, optimizer, epoch, start_time):
size = len(dataloader.dataset)
# Set the model to training mode - important for batch normalization and dropout layers
# Unnecessary in this situation but added for best practices
model.train()
for batch, (X, y) in enumerate(dataloader):
# Compute prediction and loss
pred = model(X)
loss = loss_fn(pred, y)
# Backpropagation
loss.backward()
optimizer.step()
optimizer.zero_grad()
loss, current = loss.item(), batch * BATCH_SIZE + len(X)
elapsed_seconds = int(time.time() - start_time)
print(f"{elapsed_seconds:05}: e{epoch} loss={loss:>7.2f} \t[{current:>5d}/{size:>5d}]")
def test_loop(dataloader, model, loss_fn):
# Set the model to evaluation mode - important for batch normalization and dropout layers
# Unnecessary in this situation but added for best practices
model.eval()
num_batches = len(dataloader)
test_loss = 0
# Evaluating the model with torch.no_grad() ensures that no gradients are computed during test mode
# also serves to reduce unnecessary gradient computations and memory usage for tensors with requires_grad=True
with torch.no_grad():
for X, y in dataloader:
pred = model(X)
test_loss += loss_fn(pred, y).item()
test_loss /= num_batches
print(f"Test Error: \n Avg loss: {test_loss:>8f} \n")
def create_model():
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using {device} device")
train_dataset = LandscapeDataset("lhq_256", device, train=True)
test_dataset = LandscapeDataset("lhq_256", device, train=False)
train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=BATCH_SIZE, shuffle=True)
model = NeuralNetwork().to(device)
print(model)
loss_fn = nn.MSELoss()
optimizer = torch.optim.AdamW(model.parameters(), lr=LEARNING_RATE)
start_time = time.time()
for t in range(EPOCHS):
train_loop(train_loader, model, loss_fn, optimizer, t+1, start_time)
test_loop(test_loader, model, loss_fn)
return model
if __name__ == '__main__':
model = create_model()
torch.save(model.state_dict(), "model.pth")