forked from hybridgroup/gocv
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dnn.cpp
125 lines (97 loc) · 3.21 KB
/
dnn.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
#include "dnn.h"
Net Net_ReadNet(const char* model, const char* config) {
Net n = new cv::dnn::Net(cv::dnn::readNet(model, config));
return n;
}
Net Net_ReadNetFromCaffe(const char* prototxt, const char* caffeModel) {
Net n = new cv::dnn::Net(cv::dnn::readNetFromCaffe(prototxt, caffeModel));
return n;
}
Net Net_ReadNetFromTensorflow(const char* model) {
Net n = new cv::dnn::Net(cv::dnn::readNetFromTensorflow(model));
return n;
}
void Net_Close(Net net) {
delete net;
}
bool Net_Empty(Net net) {
return net->empty();
}
void Net_SetInput(Net net, Mat blob, const char* name) {
net->setInput(*blob, name);
}
Mat Net_Forward(Net net, const char* outputName) {
return new cv::Mat(net->forward(outputName));
}
void Net_ForwardLayers(Net net, struct Mats* outputBlobs, struct CStrings outBlobNames) {
std::vector< cv::Mat > blobs;
std::vector< cv::String > names;
for (int i = 0; i < outBlobNames.length; ++i) {
names.push_back(cv::String(outBlobNames.strs[i]));
}
net->forward(blobs, names);
// copy blobs into outputBlobs
outputBlobs->mats = new Mat[blobs.size()];
for (size_t i = 0; i < blobs.size(); ++i) {
outputBlobs->mats[i] = new cv::Mat(blobs[i]);
}
outputBlobs->length = (int)blobs.size();
}
void Net_SetPreferableBackend(Net net, int backend) {
net->setPreferableBackend(backend);
}
void Net_SetPreferableTarget(Net net, int target) {
net->setPreferableTarget(target);
}
int64_t Net_GetPerfProfile(Net net) {
std::vector<double> layersTimes;
return net->getPerfProfile(layersTimes);
}
void Net_GetUnconnectedOutLayers(Net net, IntVector* res) {
std::vector< int > cids(net->getUnconnectedOutLayers());
int* ids = new int[cids.size()];
for (size_t i = 0; i < cids.size(); ++i) {
ids[i] = cids[i];
}
res->length = cids.size();
res->val = ids;
return;
}
Mat Net_BlobFromImage(Mat image, double scalefactor, Size size, Scalar mean, bool swapRB,
bool crop) {
cv::Size sz(size.width, size.height);
cv::Scalar cm = cv::Scalar(mean.val1, mean.val2, mean.val3, mean.val4);
// TODO: handle different version signatures of this function v2 vs v3.
return new cv::Mat(cv::dnn::blobFromImage(*image, scalefactor, sz, cm, swapRB, crop));
}
Mat Net_GetBlobChannel(Mat blob, int imgidx, int chnidx) {
size_t w = blob->size[3];
size_t h = blob->size[2];
return new cv::Mat(h, w, CV_32F, blob->ptr<float>(imgidx, chnidx));
}
Scalar Net_GetBlobSize(Mat blob) {
Scalar scal = Scalar();
scal.val1 = blob->size[0];
scal.val2 = blob->size[1];
scal.val3 = blob->size[2];
scal.val4 = blob->size[3];
return scal;
}
Layer Net_GetLayer(Net net, int layerid) {
return new cv::Ptr<cv::dnn::Layer>(net->getLayer(layerid));
}
void Layer_Close(Layer layer) {
delete layer;
}
int Layer_InputNameToIndex(Layer layer, const char* name) {
return (*layer)->inputNameToIndex(name);
}
int Layer_OutputNameToIndex(Layer layer, const char* name) {
return (*layer)->outputNameToIndex(name);
}
const char* Layer_GetName(Layer layer) {
return (*layer)->name.c_str();
}
const char* Layer_GetType(Layer layer) {
return (*layer)->type.c_str();
}