Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

NotImplementedError: Caught NotImplementedError in DataLoader worker process 0. #33

Open
jakub-puma opened this issue Feb 18, 2025 · 2 comments

Comments

@jakub-puma
Copy link

jakub-puma commented Feb 18, 2025

I'm trying to train using deim_rtdetrv2_r18vd_coco_120e.pth model.
Dataset is COCO2017.
I used this command to train

python train.py -c configs/deim_rtdetrv2/deim_r18vd_120e_coco.yml -r checkpoints/deim_rtdetrv2_r18vd_coco_120e.pth -d cuda:0

But I met this issue.

Not init distributed mode.
cfg:  {'task': 'detection', '_model': None, '_postprocessor': None, '_criterion': None, '_optimizer': None, '_lr_scheduler': None, '_lr_warmup_scheduler': None, '_train_dataloader': None, '_val_dataloader': None, '_ema': None, '_scaler': None, '_train_dataset': None, '_val_dataset': None, '_collate_fn': None, '_evaluator': None, '_writer': None, 'num_workers': 0, 'batch_size': None, '_train_batch_size': None, '_val_batch_size': None, '_train_shuffle': None, '_val_shuffle': None, 'resume': 'models/deim_rtdetrv2_r18vd_coco_120e.pth', 'tuning': None, 'epoches': 120, 'last_epoch': -1, 'lrsheduler': 'flatcosine', 'lr_gamma': 0.5, 'no_aug_epoch': 3, 'warmup_iter': 2000, 'flat_epoch': 64, 'use_amp': False, 'use_ema': True, 'ema_decay': 0.9999, 'ema_warmups': 2000, 'sync_bn': True, 'clip_max_norm': 0.1, 'find_unused_parameters': False, 'seed': None, 'print_freq': 100, 'checkpoint_freq': 4, 'output_dir': './output/deim_rtdetrv2_r18vd_120e_coco', 'summary_dir': None, 'device': '', 'yaml_cfg': {'task': 'detection', 'evaluator': {'type': 'CocoEvaluator', 'iou_types': ['bbox']}, 'num_classes': 80, 'remap_mscoco_category': True, 'train_dataloader': {'type': 'DataLoader', 'dataset': {'type': 'CocoDetection', 'img_folder': 'datasets\\coco8\\images\\train2017', 'ann_file': 'datasets\\coco8\\labels\\instances_train2017.json', 'return_masks': False, 'transforms': {'type': 'Compose', 'ops': [{'type': 'Mosaic', 'output_size': 320, 'rotation_range': 10, 'translation_range': [0.1, 0.1], 'scaling_range': [0.5, 1.5], 'probability': 1.0, 'fill_value': 0, 'use_cache': False, 'max_cached_images': 50, 'random_pop': True}, {'type': 'RandomPhotometricDistort', 'p': 0.5}, {'type': 'RandomZoomOut', 'fill': 0}, {'type': 'RandomIoUCrop', 'p': 0.8}, {'type': 'SanitizeBoundingBoxes', 'min_size': 1}, {'type': 'RandomHorizontalFlip'}, {'type': 'Resize', 'size': [640, 640]}, {'type': 'SanitizeBoundingBoxes', 'min_size': 1}, {'type': 'ConvertPILImage', 'dtype': 'float32', 'scale': True}, {'type': 'ConvertBoxes', 'fmt': 'cxcywh', 'normalize': True}], 'policy': {'name': 'stop_epoch', 'epoch': [4, 64, 117], 'ops': ['Mosaic', 'RandomPhotometricDistort', 'RandomZoomOut', 'RandomIoUCrop']}, 'mosaic_prob': 0.5}}, 'shuffle': True, 'num_workers': 4, 'drop_last': True, 'collate_fn': {'type': 'BatchImageCollateFunction', 'base_size': 640, 'base_size_repeat': 3, 'stop_epoch': 117, 'scales': None, 'mixup_prob': 0.5, 'mixup_epochs': [4, 64]}, 'total_batch_size': 16}, 'val_dataloader': {'type': 'DataLoader', 'dataset': {'type': 'CocoDetection', 'img_folder': 'datasets\\coco8\\images\\val2017', 'ann_file': 'datasets\\coco8\\labels\\instances_val2017.json', 'return_masks': False, 'transforms': {'type': 'Compose', 'ops': [{'type': 'Resize', 'size': [640, 640]}, {'type': 'ConvertPILImage', 'dtype': 'float32', 'scale': True}]}}, 'shuffle': False, 'num_workers': 4, 'drop_last': False, 'collate_fn': {'type': 'BatchImageCollateFunction'}, 'total_batch_size': 64}, 'print_freq': 100, 'output_dir': './output/deim_rtdetrv2_r18vd_120e_coco', 'checkpoint_freq': 4, 'sync_bn': True, 'find_unused_parameters': False, 'use_amp': False, 'scaler': {'type': 'GradScaler', 'enabled': True}, 'use_ema': True, 'ema': {'type': 'ModelEMA', 'decay': 0.9999, 'warmups': 2000, 'start': 0}, 'epoches': 120, 'clip_max_norm': 0.1, 'optimizer': {'type': 'AdamW', 'params': [{'params': '^(?=.*(?:norm|bn)).*$', 'weight_decay': 0.0}], 'lr': 0.0002, 'betas': [0.9, 0.999], 'weight_decay': 0.0001}, 'lr_scheduler': {'type': 'MultiStepLR', 'milestones': [1000], 'gamma': 0.1}, 'lr_warmup_scheduler': {'type': 'LinearWarmup', 'warmup_duration': 2000}, 'model': 'DEIM', 'criterion': 'DEIMCriterion', 'postprocessor': 'PostProcessor', 'use_focal_loss': True, 'eval_spatial_size': [640, 640], 'DEIM': {'backbone': 'PResNet', 'encoder': 'HybridEncoder', 'decoder': 'RTDETRTransformerv2'}, 'lrsheduler': 'flatcosine', 'lr_gamma': 0.5, 'warmup_iter': 2000, 'flat_epoch': 64, 'no_aug_epoch': 3, 'PResNet': {'depth': 18, 'variant': 'd', 'freeze_at': -1, 'return_idx': [1, 2, 3], 'num_stages': 4, 'freeze_norm': False, 'pretrained': True, 'local_model_dir': '../RT-DETR-main/rtdetrv2_pytorch/INK1k/'}, 'HybridEncoder': {'in_channels': [128, 256, 512], 'feat_strides': [8, 16, 32], 'hidden_dim': 256, 'use_encoder_idx': [2], 'num_encoder_layers': 1, 'nhead': 8, 'dim_feedforward': 1024, 'dropout': 0.0, 'enc_act': 'gelu', 'expansion': 0.5, 'depth_mult': 1, 'act': 'silu', 'version': 'rt_detrv2'}, 'RTDETRTransformerv2': {'feat_channels': [256, 256, 256], 'feat_strides': [8, 16, 32], 'hidden_dim': 256, 'num_levels': 3, 'num_layers': 3, 'num_queries': 300, 'num_denoising': 100, 'label_noise_ratio': 0.5, 'box_noise_scale': 1.0, 'eval_idx': -1, 'num_points': [4, 4, 4], 'cross_attn_method': 'default', 'query_select_method': 'default', 'query_pos_method': 'as_reg', 'activation': 'silu', 'mlp_act': 'silu'}, 'PostProcessor': {'num_top_queries': 300}, 'DEIMCriterion': {'weight_dict': {'loss_vfl': 1, 'loss_bbox': 5, 'loss_giou': 2, 'loss_mal': 1}, 'losses': ['mal', 'boxes'], 'alpha': 0.75, 'gamma': 1.5, 'use_uni_set': False, 'matcher': {'type': 'HungarianMatcher', 'weight_dict': {'cost_class': 2, 'cost_bbox': 5, 'cost_giou': 2}, 'alpha': 0.25, 'gamma': 2.0}}, '__include__': ['./rtdetrv2_r18vd_120e_coco.yml', '../base/rt_deim.yml'], 'config': 'configs/deim_rtdetrv2/deim_r18vd_120e_coco.yml', 'resume': 'models/deim_rtdetrv2_r18vd_coco_120e.pth', 'test_only': False, 'print_method': 'builtin', 'print_rank': 0}}
Loaded PResNet18 from local file@../RT-DETR-main/rtdetrv2_pytorch/INK1k/ResNet18_vd_pretrained_from_paddle.pth.
Load PResNet18 state_dict
     ### Query Position Embedding@as_reg ###     
Initial lr: [0.0002, 0.0002]
building train_dataloader with batch_size=16...
     ### Transform @Mosaic ###
     ### Transform @RandomPhotometricDistort ###
     ### Transform @RandomZoomOut ###
     ### Transform @RandomIoUCrop ###
     ### Transform @SanitizeBoundingBoxes ###
     ### Transform @RandomHorizontalFlip ###
     ### Transform @Resize ###
     ### Transform @SanitizeBoundingBoxes ###
     ### Transform @ConvertPILImage ###
     ### Transform @ConvertBoxes ###
     ### Mosaic with [email protected] and ZoomOut/IoUCrop existed ###
     ### ImgTransforms Epochs: [4, 64, 117] ###
     ### Policy_ops@['Mosaic', 'RandomPhotometricDistort', 'RandomZoomOut', 'RandomIoUCrop'] ###
Traceback (most recent call last):
  File "E:\Data Research\DEIM\train.py", line 84, in <module>
    main(args)
  File "E:\Data Research\DEIM\train.py", line 54, in main
    solver.fit()
  File "E:\Data Research\DEIM\engine\solver\det_solver.py", line 25, in fit
    self.train()
  File "E:\Data Research\DEIM\engine\solver\_solver.py", line 87, in train
    self.cfg.train_dataloader, shuffle=self.cfg.train_dataloader.shuffle
    ^^^^^^^^^^^^^^^^^^^^^^^^^
  File "E:\Data Research\DEIM\engine\core\yaml_config.py", line 76, in train_dataloader
    self._train_dataloader = self.build_dataloader('train_dataloader')
                             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "E:\Data Research\DEIM\engine\core\yaml_config.py", line 172, in build_dataloader
    loader = create(name, global_cfg, batch_size=bs)
             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "E:\Data Research\DEIM\engine\core\workspace.py", line 119, in create
    return create(name, global_cfg)
           ^^^^^^^^^^^^^^^^^^^^^^^^
  File "E:\Data Research\DEIM\engine\core\workspace.py", line 167, in create
    module_kwargs[k] = create(name, global_cfg)
                       ^^^^^^^^^^^^^^^^^^^^^^^^
  File "E:\Data Research\DEIM\engine\core\workspace.py", line 185, in create
    return module(**module_kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^
TypeError: BatchImageCollateFunction.__init__() got an unexpected keyword argument 'scales'

So that I added this code snippet to workspace.py file at line 179 before return module(**module_kwargs).

if "scales" in module_kwargs:
    del module_kwargs["scales"]

return module(**module_kwargs)

Then I met this issue.

Not init distributed mode.
cfg:  {'task': 'detection', '_model': None, '_postprocessor': None, '_criterion': None, '_optimizer': None, '_lr_scheduler': None, '_lr_warmup_scheduler': None, '_train_dataloader': None, '_val_dataloader': None, '_ema': None, '_scaler': None, '_train_dataset': None, '_val_dataset': None, '_collate_fn': None, '_evaluator': None, '_writer': None, 'num_workers': 0, 'batch_size': None, '_train_batch_size': None, '_val_batch_size': None, '_train_shuffle': None, '_val_shuffle': None, 'resume': 'models/deim_rtdetrv2_r18vd_coco_120e.pth', 'tuning': None, 'epoches': 120, 'last_epoch': -1, 'lrsheduler': 'flatcosine', 'lr_gamma': 0.5, 'no_aug_epoch': 3, 'warmup_iter': 2000, 'flat_epoch': 64, 'use_amp': False, 'use_ema': True, 'ema_decay': 0.9999, 'ema_warmups': 2000, 'sync_bn': True, 'clip_max_norm': 0.1, 'find_unused_parameters': False, 'seed': None, 'print_freq': 100, 'checkpoint_freq': 4, 'output_dir': './output/deim_rtdetrv2_r18vd_120e_coco', 'summary_dir': None, 'device': '', 'yaml_cfg': {'task': 'detection', 'evaluator': {'type': 'CocoEvaluator', 'iou_types': ['bbox']}, 'num_classes': 80, 'remap_mscoco_category': True, 'train_dataloader': {'type': 'DataLoader', 'dataset': {'type': 'CocoDetection', 'img_folder': 'datasets\\coco8\\images\\train2017', 'ann_file': 'datasets\\coco8\\labels\\instances_train2017.json', 'return_masks': False, 'transforms': {'type': 'Compose', 'ops': [{'type': 'Mosaic', 'output_size': 320, 'rotation_range': 10, 'translation_range': [0.1, 0.1], 'scaling_range': [0.5, 1.5], 'probability': 1.0, 'fill_value': 0, 'use_cache': False, 'max_cached_images': 50, 'random_pop': True}, {'type': 'RandomPhotometricDistort', 'p': 0.5}, {'type': 'RandomZoomOut', 'fill': 0}, {'type': 'RandomIoUCrop', 'p': 0.8}, {'type': 'SanitizeBoundingBoxes', 'min_size': 1}, {'type': 'RandomHorizontalFlip'}, {'type': 'Resize', 'size': [640, 640]}, {'type': 'SanitizeBoundingBoxes', 'min_size': 1}, {'type': 'ConvertPILImage', 'dtype': 'float32', 'scale': True}, {'type': 'ConvertBoxes', 'fmt': 'cxcywh', 'normalize': True}], 'policy': {'name': 'stop_epoch', 'epoch': [4, 64, 117], 'ops': ['Mosaic', 'RandomPhotometricDistort', 'RandomZoomOut', 'RandomIoUCrop']}, 'mosaic_prob': 0.5}}, 'shuffle': True, 'num_workers': 4, 'drop_last': True, 'collate_fn': {'type': 'BatchImageCollateFunction', 'base_size': 640, 'base_size_repeat': 3, 'stop_epoch': 117, 'scales': None, 'mixup_prob': 0.5, 'mixup_epochs': [4, 64]}, 'total_batch_size': 16}, 'val_dataloader': {'type': 'DataLoader', 'dataset': {'type': 'CocoDetection', 'img_folder': 'datasets\\coco8\\images\\val2017', 'ann_file': 'datasets\\coco8\\labels\\instances_val2017.json', 'return_masks': False, 'transforms': {'type': 'Compose', 'ops': [{'type': 'Resize', 'size': [640, 640]}, {'type': 'ConvertPILImage', 'dtype': 'float32', 'scale': True}]}}, 'shuffle': False, 'num_workers': 4, 'drop_last': False, 'collate_fn': {'type': 'BatchImageCollateFunction'}, 'total_batch_size': 64}, 'print_freq': 100, 'output_dir': './output/deim_rtdetrv2_r18vd_120e_coco', 'checkpoint_freq': 4, 'sync_bn': True, 'find_unused_parameters': False, 'use_amp': False, 'scaler': {'type': 'GradScaler', 'enabled': True}, 'use_ema': True, 'ema': {'type': 'ModelEMA', 'decay': 0.9999, 'warmups': 2000, 'start': 0}, 'epoches': 120, 'clip_max_norm': 0.1, 'optimizer': {'type': 'AdamW', 'params': [{'params': '^(?=.*(?:norm|bn)).*$', 'weight_decay': 0.0}], 'lr': 0.0002, 'betas': [0.9, 0.999], 'weight_decay': 0.0001}, 'lr_scheduler': {'type': 'MultiStepLR', 'milestones': [1000], 'gamma': 0.1}, 'lr_warmup_scheduler': {'type': 'LinearWarmup', 'warmup_duration': 2000}, 'model': 'DEIM', 'criterion': 'DEIMCriterion', 'postprocessor': 'PostProcessor', 'use_focal_loss': True, 'eval_spatial_size': [640, 640], 'DEIM': {'backbone': 'PResNet', 'encoder': 'HybridEncoder', 'decoder': 'RTDETRTransformerv2'}, 'lrsheduler': 'flatcosine', 'lr_gamma': 0.5, 'warmup_iter': 2000, 'flat_epoch': 64, 'no_aug_epoch': 3, 'PResNet': {'depth': 18, 'variant': 'd', 'freeze_at': -1, 'return_idx': [1, 2, 3], 'num_stages': 4, 'freeze_norm': False, 'pretrained': True, 'local_model_dir': '../RT-DETR-main/rtdetrv2_pytorch/INK1k/'}, 'HybridEncoder': {'in_channels': [128, 256, 512], 'feat_strides': [8, 16, 32], 'hidden_dim': 256, 'use_encoder_idx': [2], 'num_encoder_layers': 1, 'nhead': 8, 'dim_feedforward': 1024, 'dropout': 0.0, 'enc_act': 'gelu', 'expansion': 0.5, 'depth_mult': 1, 'act': 'silu', 'version': 'rt_detrv2'}, 'RTDETRTransformerv2': {'feat_channels': [256, 256, 256], 'feat_strides': [8, 16, 32], 'hidden_dim': 256, 'num_levels': 3, 'num_layers': 3, 'num_queries': 300, 'num_denoising': 100, 'label_noise_ratio': 0.5, 'box_noise_scale': 1.0, 'eval_idx': -1, 'num_points': [4, 4, 4], 'cross_attn_method': 'default', 'query_select_method': 'default', 'query_pos_method': 'as_reg', 'activation': 'silu', 'mlp_act': 'silu'}, 'PostProcessor': {'num_top_queries': 300}, 'DEIMCriterion': {'weight_dict': {'loss_vfl': 1, 'loss_bbox': 5, 'loss_giou': 2, 'loss_mal': 1}, 'losses': ['mal', 'boxes'], 'alpha': 0.75, 'gamma': 1.5, 'use_uni_set': False, 'matcher': {'type': 'HungarianMatcher', 'weight_dict': {'cost_class': 2, 'cost_bbox': 5, 'cost_giou': 2}, 'alpha': 0.25, 'gamma': 2.0}}, '__include__': ['./rtdetrv2_r18vd_120e_coco.yml', '../base/rt_deim.yml'], 'config': 'configs/deim_rtdetrv2/deim_r18vd_120e_coco.yml', 'resume': 'models/deim_rtdetrv2_r18vd_coco_120e.pth', 'test_only': False, 'print_method': 'builtin', 'print_rank': 0}}
Loaded PResNet18 from local file@../RT-DETR-main/rtdetrv2_pytorch/INK1k/ResNet18_vd_pretrained_from_paddle.pth.
Load PResNet18 state_dict
     ### Query Position Embedding@as_reg ###     
Initial lr: [0.0002, 0.0002]
building train_dataloader with batch_size=16...
     ### Transform @Mosaic ###
     ### Transform @RandomPhotometricDistort ###
     ### Transform @RandomZoomOut ###
     ### Transform @RandomIoUCrop ###
     ### Transform @SanitizeBoundingBoxes ###
     ### Transform @RandomHorizontalFlip ###
     ### Transform @Resize ###
     ### Transform @SanitizeBoundingBoxes ###
     ### Transform @ConvertPILImage ###
     ### Transform @ConvertBoxes ###
     ### Mosaic with [email protected] and ZoomOut/IoUCrop existed ###
     ### ImgTransforms Epochs: [4, 64, 117] ###
     ### Policy_ops@['Mosaic', 'RandomPhotometricDistort', 'RandomZoomOut', 'RandomIoUCrop'] ###
     ### Using MixUp with [email protected] in [4, 64] epochs ###
     ### Multi-scale Training until 117 epochs ###
     ### Multi-scales@ [480, 512, 544, 576, 608, 640, 640, 640, 800, 768, 736, 704, 672] ###
building val_dataloader with batch_size=64...
     ### Transform @Resize ###
     ### Transform @ConvertPILImage ###
Resume checkpoint from models/deim_rtdetrv2_r18vd_coco_120e.pth
Load model.state_dict
Not load criterion.state_dict
Not load postprocessor.state_dict
Load ema.state_dict from model.state_dict
Not load optimizer.state_dict
Not load lr_scheduler.state_dict
Not load lr_warmup_scheduler.state_dict

------------------------------------- Calculate Flops Results -------------------------------------
Notations:
number of parameters (Params), number of multiply-accumulate operations(MACs),
number of floating-point operations (FLOPs), floating-point operations per second (FLOPS),
fwd FLOPs (model forward propagation FLOPs), bwd FLOPs (model backward propagation FLOPs),
default model backpropagation takes 2.00 times as much computation as forward propagation.

Total Training Params:                                                  19.98 M
fwd MACs:                                                               30.0313 GMACs
fwd FLOPs:                                                              60.2087 GFLOPS
fwd+bwd MACs:                                                           90.0938 GMACs
fwd+bwd FLOPs:                                                          180.626 GFLOPS
---------------------------------------------------------------------------------------------------
{'Model FLOPs:60.2087 GFLOPS   MACs:30.0313 GMACs   Params:19979152'}
------------------------------------------Start training-------------------------------------------
     ## Using Self-defined Scheduler-flatcosine ##
[0.0002, 0.0002] [0.0001, 0.0001] 0 2000 0 0
number of trainable parameters: 20183440
>>>>>> iterable :  0
Traceback (most recent call last):
  File "E:\Data Research\DEIM\train.py", line 84, in <module>
    main(args)
  File "E:\Data Research\DEIM\train.py", line 54, in main
    solver.fit()
  File "E:\Data Research\DEIM\engine\solver\det_solver.py", line 108, in fit
    test_stats, coco_evaluator = evaluate(
                                 ^^^^^^^^^
  File "E:\Data Research\DEIM\.venv\Lib\site-packages\torch\utils\_contextlib.py", line 116, in decorate_context
    return func(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^
  File "E:\Data Research\DEIM\engine\solver\det_engine.py", line 140, in evaluate
    for samples, targets in metric_logger.log_every(data_loader, 10, header):
  File "E:\Data Research\DEIM\engine\misc\logger.py", line 215, in log_every
    for obj in iterable:
  File "E:\Data Research\DEIM\.venv\Lib\site-packages\torch\utils\data\dataloader.py", line 708, in __next__
    data = self._next_data()
           ^^^^^^^^^^^^^^^^^
  File "E:\Data Research\DEIM\.venv\Lib\site-packages\torch\utils\data\dataloader.py", line 1480, in _next_data
    return self._process_data(data)
           ^^^^^^^^^^^^^^^^^^^^^^^^
  File "E:\Data Research\DEIM\.venv\Lib\site-packages\torch\utils\data\dataloader.py", line 1505, in _process_data
    data.reraise()
  File "E:\Data Research\DEIM\.venv\Lib\site-packages\torch\_utils.py", line 733, in reraise
    raise exception
NotImplementedError: Caught NotImplementedError in DataLoader worker process 0.
Original Traceback (most recent call last):
  File "E:\Data Research\DEIM\.venv\Lib\site-packages\torch\utils\data\_utils\worker.py", line 349, in _worker_loop
    data = fetcher.fetch(index)  # type: ignore[possibly-undefined]
           ^^^^^^^^^^^^^^^^^^^^
  File "E:\Data Research\DEIM\.venv\Lib\site-packages\torch\utils\data\_utils\fetch.py", line 52, in fetch
    data = [self.dataset[idx] for idx in possibly_batched_index]
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "E:\Data Research\DEIM\.venv\Lib\site-packages\torch\utils\data\_utils\fetch.py", line 52, in <listcomp>
    data = [self.dataset[idx] for idx in possibly_batched_index]
            ~~~~~~~~~~~~^^^^^
  File "E:\Data Research\DEIM\engine\data\dataset\coco_dataset.py", line 45, in __getitem__
    img, target, _ = self._transforms(img, target, self)
                     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "E:\Data Research\DEIM\.venv\Lib\site-packages\torch\nn\modules\module.py", line 1739, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "E:\Data Research\DEIM\.venv\Lib\site-packages\torch\nn\modules\module.py", line 1750, in _call_impl
    return forward_call(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "E:\Data Research\DEIM\engine\data\transforms\container.py", line 58, in forward
    return self.get_forward(self.policy['name'])(*inputs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "E:\Data Research\DEIM\engine\data\transforms\container.py", line 71, in default_forward
    sample = transform(sample)
             ^^^^^^^^^^^^^^^^^
  File "E:\Data Research\DEIM\.venv\Lib\site-packages\torch\nn\modules\module.py", line 1739, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "E:\Data Research\DEIM\.venv\Lib\site-packages\torch\nn\modules\module.py", line 1750, in _call_impl
    return forward_call(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "E:\Data Research\DEIM\.venv\Lib\site-packages\torchvision\transforms\v2\_transform.py", line 68, in forward
    flat_outputs = [
                   ^
  File "E:\Data Research\DEIM\.venv\Lib\site-packages\torchvision\transforms\v2\_transform.py", line 69, in <listcomp>
    self.transform(inpt, params) if needs_transform else inpt
    ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "E:\Data Research\DEIM\.venv\Lib\site-packages\torchvision\transforms\v2\_transform.py", line 55, in transform
    raise NotImplementedError
NotImplementedError

Please help me this problem asap.

@ss989462
Copy link

ss989462 commented Mar 1, 2025

I have encountered the same problem. Have you solved it now?

@ShihuaHuang95
Copy link
Owner

Hi, thank you so much for your interest in our work!
It looks like the issue might be related to data transformation. The raise NotImplementedError suggests that there might be some transformation operators that your current version doesn’t support.
If this issue persists, you could first try aligning with the recommended runtime environment we suggest.
If it still occurs after that, please provide more detailed information so we can assist you better in resolving it.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants