forked from kenshohara/3D-ResNets-PyTorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
97 lines (66 loc) · 2.27 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import csv
import random
from functools import partialmethod
import torch
import numpy as np
from sklearn.metrics import precision_recall_fscore_support
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
class Logger(object):
def __init__(self, path, header):
self.log_file = path.open('w')
self.logger = csv.writer(self.log_file, delimiter='\t')
self.logger.writerow(header)
self.header = header
def __del(self):
self.log_file.close()
def log(self, values):
write_values = []
for col in self.header:
assert col in values
write_values.append(values[col])
self.logger.writerow(write_values)
self.log_file.flush()
def calculate_accuracy(outputs, targets):
with torch.no_grad():
batch_size = targets.size(0)
_, pred = outputs.topk(1, 1, largest=True, sorted=True)
pred = pred.t()
correct = pred.eq(targets.view(1, -1))
n_correct_elems = correct.float().sum().item()
return n_correct_elems / batch_size
def calculate_precision_and_recall(outputs, targets, pos_label=1):
with torch.no_grad():
_, pred = outputs.topk(1, 1, largest=True, sorted=True)
precision, recall, _, _ = precision_recall_fscore_support(
targets.view(-1, 1).cpu().numpy(),
pred.cpu().numpy())
return precision[pos_label], recall[pos_label]
def worker_init_fn(worker_id):
torch_seed = torch.initial_seed()
random.seed(torch_seed + worker_id)
if torch_seed >= 2**32:
torch_seed = torch_seed % 2**32
np.random.seed(torch_seed + worker_id)
def get_lr(optimizer):
lrs = []
for param_group in optimizer.param_groups:
lr = float(param_group['lr'])
lrs.append(lr)
return max(lrs)
def partialclass(cls, *args, **kwargs):
class PartialClass(cls):
__init__ = partialmethod(cls.__init__, *args, **kwargs)
return PartialClass