-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathGP_1D_Hydro_HLLC_evol.cpp
448 lines (363 loc) · 13.8 KB
/
GP_1D_Hydro_HLLC_evol.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <omp.h>
#include <math.h>
#include "Eigen/LU"
using Eigen::MatrixXd;
using Eigen::VectorXd;
float Gamma = 5.0/3.0;
int N_in = 256;
int R = 2; //stencil radii for Gaussian process
int nghost = R + 1; // number of ghost zones
int N = N_in + 2 * nghost;
double dx = 1.0/N_in;
double l = 30; //hyperparameter for SE kernel (the best value depends on the problem)
int NThread = 4; // Total number of threads in OpenMP
double T = 0.1;
//initial condition: Sod's shock tube
void InitialCondition_Sod_shock_tube ( double **W ){
for (int i=0;i<N;i++){
if (i<N/2-1){
W[0][i] = 1.0;
W[1][i] = 0.0;
W[2][i] = 1.0;
}
else{
W[0][i] = 0.125;
W[1][i] = 0.0;
W[2][i] = 0.1;
}
}
}
//initial condition: acoustic wave
void InitialCondition_acoustic_wave ( double **W, double time=0){
double L = 1;
double cs = 1.0; // sound speed
double d_amp = 1.0e-5; // density perturbation amplitude
double d0 = 1.0; // density background
double u1 = cs*d_amp/d0; // velocity perturbation
double P0 = pow(cs, 2.0)*d0/Gamma; // background pressure
double P1 = pow(cs, 2.0)*d_amp; // pressure perturbation
for (int i=0;i<N;i++){
W[0][i] = d0 + d_amp*sin(2.0*M_PI*i*L/(N_in) + 2.0*M_PI*time);
W[1][i] = u1*sin(2.0*M_PI*i*L/(N_in) + 2.0*M_PI*time);
W[2][i] = P0 + P1*sin(2.0*M_PI*i*L/(N_in) + 2.0*M_PI*time);
}
}
//boundary condition: outflow
void BoundaryCondition_outflow ( double **U ){
for (int i=0;i<nghost;i++){
U[0][i] = U[0][nghost];
U[1][i] = U[1][nghost];
U[2][i] = U[2][nghost];
U[0][N-1-i] = U[0][N-1-nghost];
U[1][N-1-i] = U[1][N-1-nghost];
U[2][N-1-i] = U[2][N-1-nghost];
}
}
//boundary condition: periodic
void BoundaryCondition_periodic ( double **U ){
double **Copy = new double*[3];
for (int i = 0; i < 3; i++) Copy[i] = new double[2*nghost];
for (int i=0; i<nghost; i++){
Copy[0][i] = U[0][i+N_in];
Copy[1][i] = U[1][i+N_in];
Copy[2][i] = U[2][i+N_in];}
for (int i=nghost; i<2*nghost; i++){
Copy[0][i] = U[0][i];
Copy[1][i] = U[1][i];
Copy[2][i] = U[2][i];}
for (int i=0;i<nghost;i++){
U[0][i] = Copy[0][i];
U[1][i] = Copy[1][i];
U[2][i] = Copy[2][i];
U[0][N-1-i] = Copy[0][2*nghost-i-1];
U[1][N-1-i] = Copy[1][2*nghost-i-1];
U[2][N-1-i] = Copy[2][2*nghost-i-1];
}
}
// primitive variables to conserved variables
void Conserved2Primitive ( double **U, double **pri ){
# pragma omp parallel for
for (int i=0;i<N;i++){
pri[0][i]=U[0][i];
pri[1][i]=U[1][i]/U[0][i];
pri[2][i]=(Gamma-1.0)*(U[2][i]-0.5*pow(U[1][i],2)/U[0][i]);
}
}
// conserved variables to primitive variables
void Primitive2Conserved ( double **pri, double **cons ){
# pragma omp parallel for
for (int i=0;i<N;i++){
cons[0][i]=pri[0][i];
cons[1][i]=pri[1][i]*pri[0][i];
cons[2][i]=pri[2][i]/(Gamma-1)+0.5*pri[0][i]*pow(pri[1][i],2);
}
}
double ComputePressure( double tho, double px, double e ){
double p = (Gamma-1.0)*( e - 0.5*pow(px,2)/tho);
return p;
}
void SoundSpeedMax( double **U, double *s_max) {
double s[N], p[N];
# pragma omp parallel for
for (int i=0;i<N;i++){
p[i] = ComputePressure(U[0][i],U[1][i],U[2][i]);
s[i] = sqrt(Gamma*p[i]/U[0][i]);
if (U[1][i]/U[0][i]>=0) s[i] += U[1][i]/U[0][i];
else s[i] -= U[1][i]/U[0][i];
}
*s_max = 0.;
for (int i=0;i<N;i++){
if (s[i]>*s_max) *s_max = s[i];
}
}
void Conserved2Flux ( double **U, double **flux ){
# pragma omp parallel for
for (int i=0;i<N;i++){
double P = ComputePressure( U[0][i], U[1][i], U[2][i]);
double u = U[1][i] / U[0][i];
flux[0][i] = U[1][i];
flux[1][i] = u*U[1][i] + P;
flux[2][i] = (P+U[2][i])*u;
}
}
//////////////////////////////////////////////////////////////////////////////////////////
// Gaussian Process data reconstruction [Ref. Reyes2018] (w/o WENO)
// Squared Exponential function
double SE(double x, double y){
double r = abs(x - y);
double K = exp(-pow(r/l, 2)/2);
return K;
}
// calculated from covariance kernels
void Weights_vector( double *weights, double pos){
int kernel_length = 1+2*R;
MatrixXd K(kernel_length, kernel_length);
VectorXd k(kernel_length), w(kernel_length);
for (int i = 0; i < kernel_length; i++) {
k(i) = SE(i-R, pos);
// printf( "k[%d]: %0.3f\n", i, k(i));
for (int j = 0; j < kernel_length; j++) {
K(i, j) = SE(i, j);
}
}
// std::cout << "Here is the matrix K:" << std::endl << K << std::endl;
// std::cout << "Its inverse is:" << std::endl << K.inverse() << std::endl;
w = k.transpose() * K.inverse();
for (int i = 0; i < kernel_length; i++) {
weights[i] = w(i);
// printf( "w[%d]: %0.3f\n", i, w(i));
}
}
void DataReconstruction_GP( double **U_L, double **U_R, double **U, double **W, double *w_L, double *w_R ){
double **W_L = new double*[3];
for (int i = 0; i < 3; i++) W_L[i] = new double[N];
double **W_R = new double*[3];
for (int i = 0; i < 3; i++) W_R[i] = new double[N];
Conserved2Primitive(U, W);
# pragma omp parallel for
for (int i = nghost; i < N-nghost; i++){
for (int j=0; j<3; j++){
W_L[j][i] = 0.0;
W_R[j][i] = 0.0;
for (int k = 0; k < 1+2*R; k++){
W_L[j][i] += W[j][i+k-R]*w_L[k];
W_R[j][i] += W[j][i+k-R]*w_R[k];
// printf( "weights_L[%d]: %0.3f\n", k, w_L[k]);
// printf( "W[%d][%d]: %e\n", j, i+k-R, W[j][i+k-R]);
// printf( "W_L[%d][%d]: %e\n", j, i, W_L[j][i]);
}
}
}
// printf("%e\n", W_L[1][5]);
BoundaryCondition_periodic(W_L);
BoundaryCondition_periodic(W_R);
Primitive2Conserved(W_L, U_L);
Primitive2Conserved(W_R, U_R);
// BoundaryCondition_periodic(U_L);
// BoundaryCondition_periodic(U_R);
}
//////////////////////////////////////////////////////////////////////////////////////////
void HLLC_Riemann_Solver ( double **U_L, double **U_R, double **HLLC_flux ){
double **F_L = new double*[3];
for (int i = 0; i < 3; i++) F_L[i] = new double[N];
double **F_R = new double*[3];
for (int i = 0; i < 3; i++) F_R[i] = new double[N];
double **F_star_L = new double*[3];
for (int i = 0; i < 3; i++) F_star_L[i] = new double[N];
double **F_star_R = new double*[3];
for (int i = 0; i < 3; i++) F_star_R[i] = new double[N];
double a_L[N], a_R[N];
double u_L[N], u_R[N];
double p_R[N], p_L[N], p_star[N];
double q_L[N], q_R[N], S_L[N], S_R[N], S_star[N];
# pragma omp parallel for
for (int i=nghost;i<N-nghost+1;i++){
u_L[i] = U_L[1][i]/U_L[0][i];
u_R[i] = U_R[1][i]/U_R[0][i];
p_L[i] = ComputePressure(U_L[0][i],U_L[1][i],U_L[2][i]);
p_R[i] = ComputePressure(U_R[0][i],U_R[1][i],U_R[2][i]);
a_L[i] = sqrt(Gamma*p_L[i]/U_L[0][i]);
a_R[i] = sqrt(Gamma*p_R[i]/U_R[0][i]);
//step 1: pressure estimate
p_star[i] = 0.5*(p_L[i]+p_R[i])-0.5*(u_R[i]-u_L[i])*0.5*(U_L[0][i]+U_R[0][i])*0.5*(a_L[i]+a_R[i]);
if (p_star[i]<0) p_star[i] = 0.;
//step 2: wave speed estimate
if (p_star[i]>p_L[i]){
q_L[i] = sqrt(1+(Gamma+1)*(p_star[i]/p_L[i]-1)/2.0/Gamma);
}
else q_L[i]=1.0;
if (p_star[i]>p_R[i]){
q_R[i] = sqrt(1+(Gamma+1)*(p_star[i]/p_R[i]-1)/2.0/Gamma);
}
else q_R[i]=1.0;
S_L[i] = u_L[i]-a_L[i]*q_L[i];
S_R[i] = u_R[i]+a_R[i]*q_R[i];
S_star[i] = (p_R[i]-p_L[i]+U_L[1][i]*(S_L[i]-u_L[i])-U_R[1][i]*(S_R[i]-u_R[i]))/(U_L[0][i]*(S_L[i]-u_L[i])-U_R[0][i]*(S_R[i]-u_R[i]));
//step 3: HLLC flux
Conserved2Flux(U_L, F_L);
Conserved2Flux(U_R, F_R);
F_star_L[0][i] = S_star[i]*(S_L[i]*U_L[0][i]-F_L[0][i])/(S_L[i]-S_star[i]);
F_star_L[1][i] = (S_star[i]*(S_L[i]*U_L[1][i]-F_L[1][i])+S_L[i]*(p_L[i]+U_L[0][i]*(S_L[i]-u_L[i])*(S_star[i]-u_L[i])))/(S_L[i]-S_star[i]);
F_star_L[2][i] = (S_star[i]*(S_L[i]*U_L[2][i]-F_L[2][i])+S_L[i]*S_star[i]*(p_L[i]+U_L[0][i]*(S_L[i]-u_L[i])*(S_star[i]-u_L[i])))/(S_L[i]-S_star[i]);
F_star_R[0][i] = S_star[i]*(S_R[i]*U_R[0][i]-F_R[0][i])/(S_R[i]-S_star[i]);
F_star_R[1][i] = (S_star[i]*(S_R[i]*U_R[1][i]-F_R[1][i])+S_R[i]*(p_R[i]+U_L[0][i]*(S_R[i]-u_R[i])*(S_star[i]-u_R[i])))/(S_R[i]-S_star[i]);
F_star_R[2][i] = (S_star[i]*(S_R[i]*U_R[2][i]-F_R[2][i])+S_R[i]*S_star[i]*(p_R[i]+U_L[0][i]*(S_R[i]-u_R[i])*(S_star[i]-u_R[i])))/(S_R[i]-S_star[i]);
if (S_L[i]>=0){
HLLC_flux[0][i] = F_L[0][i];
HLLC_flux[1][i] = F_L[1][i];
HLLC_flux[2][i] = F_L[2][i];
}
else if (S_L[i]<=0 && S_star[i]>=0){
HLLC_flux[0][i] = F_star_L[0][i];
HLLC_flux[1][i] = F_star_L[1][i];
HLLC_flux[2][i] = F_star_L[2][i];
}
else if (S_star[i]<=0 && S_R[i]>=0){
HLLC_flux[0][i] = F_star_R[0][i];
HLLC_flux[1][i] = F_star_R[1][i];
HLLC_flux[2][i] = F_star_R[2][i];
}
else if (S_R[i]<=0){
HLLC_flux[0][i] = F_R[0][i];
HLLC_flux[1][i] = F_R[1][i];
HLLC_flux[2][i] = F_R[2][i];
}
}
}
int main(int argc, const char * argv[]) {
// OpenMP: Set the number of threads
omp_set_num_threads( NThread );
double start;
double end;
start = omp_get_wtime();
double **U = new double*[3];
for (int i = 0; i < 3; i++) U[i] = new double[N];
double **W = new double*[3];
for (int i = 0; i < 3; i++) W[i] = new double[N];
double **HLLC_flux_L = new double*[3];
for (int i = 0; i < 3; i++) HLLC_flux_L[i] = new double[N];
double **HLLC_flux_R = new double*[3];
for (int i = 0; i < 3; i++) HLLC_flux_R[i] = new double[N];
double **U_L = new double*[3];
for (int i = 0; i < 3; i++) U_L[i] = new double[N];
double **U_R = new double*[3];
for (int i = 0; i < 3; i++) U_R[i] = new double[N];
double **flux_L = new double*[3];
for (int i = 0; i < 3; i++) flux_L[i] = new double[N];
double **flux_R = new double*[3];
for (int i = 0; i < 3; i++) flux_R[i] = new double[N];
double **W_init = new double*[3];
for (int i = 0; i < 3; i++) W_init[i] = new double[N];
int num = 0;
double dt;
double t = 0.;
double S_max = 6.29;
double weights_L[1+2*R];
double weights_R[1+2*R];
Weights_vector(weights_L, -0.5);
Weights_vector(weights_R, 0.5);
//save data into file
FILE * data_ptr;
data_ptr = fopen("./bin/data_evol.txt", "w");
if (data_ptr==0) return 0;
//set the initial condition
InitialCondition_acoustic_wave(W);
BoundaryCondition_periodic(W);
for (int i=0;i<3;i++){
for (int j=0;j<N;j++){
fprintf(data_ptr,"%e ", W[i][j]);
}
fprintf(data_ptr,"\n");
}
Primitive2Conserved(W, U);
while (t+dt<=T){
// Compute dt
SoundSpeedMax(U, &S_max);
dt = dx/S_max;
t += dt;
printf("Debug: dt = %.10f, t = %.10f\n", dt, t);
num += 1;
// MUSCL-Hancock scheme step 1: Data reconstruction
// data reconstruction using (smooth) Gaussian process
DataReconstruction_GP(U_L, U_R, U, W, weights_L, weights_R);
// MUSCL-Hancock scheme step 2: Evolve the face-centered data by dt/2
Conserved2Flux(U_L, flux_L);
Conserved2Flux(U_R, flux_R);
for (int i=1;i<N-1;i++){
U_L[0][i] -= (flux_R[0][i]-flux_L[0][i])*0.5*dt/dx;
U_L[1][i] -= (flux_R[1][i]-flux_L[1][i])*0.5*dt/dx;
U_L[2][i] -= (flux_R[2][i]-flux_L[2][i])*0.5*dt/dx;
U_R[0][i] -= (flux_R[0][i]-flux_L[0][i])*0.5*dt/dx;
U_R[1][i] -= (flux_R[1][i]-flux_L[1][i])*0.5*dt/dx;
U_R[2][i] -= (flux_R[2][i]-flux_L[2][i])*0.5*dt/dx;
}
BoundaryCondition_periodic(U_L);
BoundaryCondition_periodic(U_R);
for (int i=N-1;i>0;i--){
U_R[0][i] = U_R[0][i-1];
U_R[1][i] = U_R[1][i-1];
U_R[2][i] = U_R[2][i-1];
}
BoundaryCondition_periodic(U_R);
// MUSCL-Hancock scheme step 3: Riemann solver (solve the flux at the left interface)
HLLC_Riemann_Solver(U_R,U_L,HLLC_flux_L);
// MUSCL-Hancock scheme step 4: Evolve the volume-averaged data by dt
for (int i=nghost;i<N-nghost;i++){
U[0][i] -= (HLLC_flux_L[0][i+1]-HLLC_flux_L[0][i])*dt/dx;
U[1][i] -= (HLLC_flux_L[1][i+1]-HLLC_flux_L[1][i])*dt/dx;
U[2][i] -= (HLLC_flux_L[2][i+1]-HLLC_flux_L[2][i])*dt/dx;
}
BoundaryCondition_periodic(U);
// break; //debug
}
Conserved2Primitive(U, W);
end = omp_get_wtime();
InitialCondition_acoustic_wave(W_init, t);
BoundaryCondition_periodic(W_init);
double error = 0;
for (int i=nghost;i<N-nghost;i++){
error += fabs(W_init[0][i] - W[0][i]);
}
error /= N_in;
printf("N = %d, total threads = %d\n", N, NThread);
printf("Wall-clock time = %6f, number of iteration = %d\n", end-start, num);
printf("Errors = %e\n", error);
//save data into file
for (int i=0;i<3;i++){
for (int j=0;j<N;j++){
fprintf(data_ptr,"%e ", W[i][j]);
}
fprintf(data_ptr,"\n");
}
fclose(data_ptr);
delete[] U;
delete[] W;
delete[] HLLC_flux_L;
delete[] HLLC_flux_R;
delete[] U_L;
delete[] U_R;
return 0;
}