-
Notifications
You must be signed in to change notification settings - Fork 0
/
EllipticCurve.sol
892 lines (410 loc) · 12.5 KB
/
EllipticCurve.sol
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
pragma solidity >=0.5.3 <0.7.0;
/**
* @title Elliptic Curve Library
* @dev Library providing arithmetic operations over elliptic curves.
* This library does not check whether the inserted points belong to the curve
* isOnCurve function should be used by the library user to check the aforementioned statement.
* @author Witnet Foundation
*/
library EllipticCurve {
uint256 public constant GX = 0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798;
uint256 public constant GY = 0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8;
uint256 public constant AA = 0;
uint256 public constant BB = 7;
uint256 public constant PP = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F;
/// Pre-computed constant for 2 ** 255
uint256 constant private U255_MAX_PLUS_1 = 57896044618658097711785492504343953926634992332820282019728792003956564819968;
/// @dev Modular euclidean inverse of a number (mod p).
/// @param _x The number
/// @param _pp The modulus
/// @return q such that x*q = 1 (mod _pp)
function invMod(uint256 _x, uint256 _pp) internal pure returns (uint256) {
require(_x != 0 && _x != _pp && _pp != 0, "Invalid number");
uint256 q = 0;
uint256 newT = 1;
uint256 r = _pp;
uint256 t;
while (_x != 0) {
t = r / _x;
(q, newT) = (newT, addmod(q, (_pp - mulmod(t, newT, _pp)), _pp));
(r, _x) = (_x, r - t * _x);
}
return q;
}
/// @dev Modular exponentiation, b^e % _pp.
/// Source: https://github.com/androlo/standard-contracts/blob/master/contracts/src/crypto/ECCMath.sol
/// @param _base base
/// @param _exp exponent
/// @param _pp modulus
/// @return r such that r = b**e (mod _pp)
function expMod(uint256 _base, uint256 _exp, uint256 _pp) internal pure returns (uint256) {
require(_pp!=0, "Modulus is zero");
if (_base == 0)
return 0;
if (_exp == 0)
return 1;
uint256 r = 1;
uint256 bit = U255_MAX_PLUS_1;
assembly {
for { } gt(bit, 0) { }{
r := mulmod(mulmod(r, r, _pp), exp(_base, iszero(iszero(and(_exp, bit)))), _pp)
r := mulmod(mulmod(r, r, _pp), exp(_base, iszero(iszero(and(_exp, div(bit, 2))))), _pp)
r := mulmod(mulmod(r, r, _pp), exp(_base, iszero(iszero(and(_exp, div(bit, 4))))), _pp)
r := mulmod(mulmod(r, r, _pp), exp(_base, iszero(iszero(and(_exp, div(bit, 8))))), _pp)
bit := div(bit, 16)
}
}
return r;
}
/// @dev Converts a point (x, y, z) expressed in Jacobian coordinates to affine coordinates (x', y', 1).
/// @param _x coordinate x
/// @param _y coordinate y
/// @param _z coordinate z
/// @param _pp the modulus
/// @return (x', y') affine coordinates
function toAffine(
uint256 _x,
uint256 _y,
uint256 _z,
uint256 _pp)
internal pure returns (uint256, uint256)
{
uint256 zInv = invMod(_z, _pp);
uint256 zInv2 = mulmod(zInv, zInv, _pp);
uint256 x2 = mulmod(_x, zInv2, _pp);
uint256 y2 = mulmod(_y, mulmod(zInv, zInv2, _pp), _pp);
return (x2, y2);
}
/// @dev Derives the y coordinate from a compressed-format point x [[SEC-1]](https://www.secg.org/SEC1-Ver-1.0.pdf).
/// @param _prefix parity byte (0x02 even, 0x03 odd)
/// @param _x coordinate x
/// @return y coordinate y
function deriveY(
uint8 _prefix,
uint256 _x)
internal pure returns (uint256)
{
uint256 _aa=AA;
uint256 _bb=BB;
uint256 _pp=PP;
require(_prefix == 0x02 || _prefix == 0x03, "Invalid compressed EC point prefix");
// x^3 + ax + b
uint256 y3 = addmod(mulmod(_x, mulmod(_x, _x, _pp), _pp), addmod(mulmod(_x, _aa, _pp), _bb, _pp), _pp);
uint256 y2 = expMod(y3, (_pp + 1) / 4, _pp);
// uint256 cmp = yBit ^ y_ & 1;
uint256 y = (y2 + _prefix) % 2 == 0 ? y2 : _pp - y2;
//require(expMod(y,2,_pp)==y3,"invalid x");
if(expMod(y,2,_pp)==y3) return y;
else return 0;
}
/// @dev Check whether point (x,y) is on curve defined by a, b, and _pp.
/// @param _x coordinate x of P1
/// @param _y coordinate y of P1
/// @return true if x,y in the curve, false else
function isOnCurve(
uint _x,
uint _y)
internal pure returns (bool)
{
uint _bb=BB;
uint _pp=PP;
uint _aa=AA;
if (0 == _x || _x >= _pp || 0 == _y || _y >= _pp) {
return false;
}
// y^2
uint lhs = mulmod(_y, _y, _pp);
// x^3
uint rhs = mulmod(mulmod(_x, _x, _pp), _x, _pp);
if (_aa != 0) {
// x^3 + a*x
rhs = addmod(rhs, mulmod(_x, _aa, _pp), _pp);
}
if (_bb != 0) {
// x^3 + a*x + b
rhs = addmod(rhs, _bb, _pp);
}
return lhs == rhs;
}
/// @dev Calculate inverse (x, -y) of point (x, y).
/// @param _x coordinate x of P1
/// @param _y coordinate y of P1
/// @param _pp the modulus
/// @return (x, -y)
function ecInv(
uint256 _x,
uint256 _y,
uint256 _pp)
internal pure returns (uint256, uint256)
{
return (_x, (_pp - _y) % _pp);
}
/// @dev Add two points (x1, y1) and (x2, y2) in affine coordinates.
/// @param _x1 coordinate x of P1
/// @param _y1 coordinate y of P1
/// @param _x2 coordinate x of P2
/// @param _y2 coordinate y of P2
/// @return (qx, qy) = P1+P2 in affine coordinates
function ecAdd(
uint256 _x1,
uint256 _y1,
uint256 _x2,
uint256 _y2)
internal pure returns(uint256, uint256)
{
uint256 _aa=AA;
uint256 _pp=PP;
uint x = 0;
uint y = 0;
uint z = 0;
// Double if x1==x2 else add
if (_x1==_x2) {
// y1 = -y2 mod p
if (addmod(_y1, _y2, _pp) == 0) {
return(0, 0);
} else {
// P1 = P2
(x, y, z) = jacDouble(
_x1,
_y1,
1,
_aa,
_pp);
}
} else {
(x, y, z) = jacAdd(
_x1,
_y1,
1,
_x2,
_y2,
1,
_pp);
}
// Get back to affine
return toAffine(
x,
y,
z,
_pp);
}
/// @dev Substract two points (x1, y1) and (x2, y2) in affine coordinates.
/// @param _x1 coordinate x of P1
/// @param _y1 coordinate y of P1
/// @param _x2 coordinate x of P2
/// @param _y2 coordinate y of P2
/// @return (qx, qy) = P1-P2 in affine coordinates
function ecSub(
uint256 _x1,
uint256 _y1,
uint256 _x2,
uint256 _y2
)
internal pure returns(uint256, uint256)
{
// invert square
(uint256 x, uint256 y) = ecInv(_x2, _y2, PP);
// P1-square
return ecAdd(
_x1,
_y1,
x,
y);
}
/// @dev Multiply point (x1, y1, z1) times d in affine coordinates.
/// @param _k scalar to multiply
/// @param _x coordinate x of P1
/// @param _y coordinate y of P1
/// @return (qx, qy) = d*P in affine coordinates
function ecMul(
uint256 _k,
uint256 _x,
uint256 _y
)
internal pure returns(uint256, uint256)
{
uint256 _aa=AA;
uint256 _pp=PP;
// Jacobian multiplication
(uint256 x1, uint256 y1, uint256 z1) = jacMul(
_k,
_x,
_y,
1,
_aa,
_pp);
// Get back to affine
return toAffine(
x1,
y1,
z1,
_pp);
}
/// @dev Adds two points (x1, y1, z1) and (x2 y2, z2).
/// @param _x1 coordinate x of P1
/// @param _y1 coordinate y of P1
/// @param _z1 coordinate z of P1
/// @param _x2 coordinate x of square
/// @param _y2 coordinate y of square
/// @param _z2 coordinate z of square
/// @param _pp the modulus
/// @return (qx, qy, qz) P1+square in Jacobian
function jacAdd(
uint256 _x1,
uint256 _y1,
uint256 _z1,
uint256 _x2,
uint256 _y2,
uint256 _z2,
uint256 _pp)
internal pure returns (uint256, uint256, uint256)
{
if (_x1==0 && _y1==0)
return (_x2, _y2, _z2);
if (_x2==0 && _y2==0)
return (_x1, _y1, _z1);
// We follow the equations described in https://pdfs.semanticscholar.org/5c64/29952e08025a9649c2b0ba32518e9a7fb5c2.pdf Section 5
uint[4] memory zs; // z1^2, z1^3, z2^2, z2^3
zs[0] = mulmod(_z1, _z1, _pp);
zs[1] = mulmod(_z1, zs[0], _pp);
zs[2] = mulmod(_z2, _z2, _pp);
zs[3] = mulmod(_z2, zs[2], _pp);
// u1, s1, u2, s2
zs = [
mulmod(_x1, zs[2], _pp),
mulmod(_y1, zs[3], _pp),
mulmod(_x2, zs[0], _pp),
mulmod(_y2, zs[1], _pp)
];
// In case of zs[0] == zs[2] && zs[1] == zs[3], double function should be used
require(zs[0] != zs[2] || zs[1] != zs[3], "Use jacDouble function instead");
uint[4] memory hr;
//h
hr[0] = addmod(zs[2], _pp - zs[0], _pp);
//r
hr[1] = addmod(zs[3], _pp - zs[1], _pp);
//h^2
hr[2] = mulmod(hr[0], hr[0], _pp);
// h^3
hr[3] = mulmod(hr[2], hr[0], _pp);
// qx = -h^3 -2u1h^2+r^2
uint256 qx = addmod(mulmod(hr[1], hr[1], _pp), _pp - hr[3], _pp);
qx = addmod(qx, _pp - mulmod(2, mulmod(zs[0], hr[2], _pp), _pp), _pp);
// qy = -s1*z1*h^3+r(u1*h^2 -x^3)
uint256 qy = mulmod(hr[1], addmod(mulmod(zs[0], hr[2], _pp), _pp - qx, _pp), _pp);
qy = addmod(qy, _pp - mulmod(zs[1], hr[3], _pp), _pp);
// qz = h*z1*z2
uint256 qz = mulmod(hr[0], mulmod(_z1, _z2, _pp), _pp);
return(qx, qy, qz);
}
/// @dev Doubles a points (x, y, z).
/// @param _x coordinate x of P1
/// @param _y coordinate y of P1
/// @param _z coordinate z of P1
/// @param _aa the a scalar in the curve equation
/// @param _pp the modulus
/// @return (qx, qy, qz) 2P in Jacobian
function jacDouble(
uint256 _x,
uint256 _y,
uint256 _z,
uint256 _aa,
uint256 _pp)
internal pure returns (uint256, uint256, uint256)
{
if (_z == 0)
return (_x, _y, _z);
// We follow the equations described in https://pdfs.semanticscholar.org/5c64/29952e08025a9649c2b0ba32518e9a7fb5c2.pdf Section 5
// Note: there is a bug in the paper regarding the m parameter, M=3*(x1^2)+a*(z1^4)
// x, y, z at this point represent the squares of _x, _y, _z
uint256 x = mulmod(_x, _x, _pp); //x1^2
uint256 y = mulmod(_y, _y, _pp); //y1^2
uint256 z = mulmod(_z, _z, _pp); //z1^2
// s
uint s = mulmod(4, mulmod(_x, y, _pp), _pp);
// m
uint m = addmod(mulmod(3, x, _pp), mulmod(_aa, mulmod(z, z, _pp), _pp), _pp);
// x, y, z at this point will be reassigned and rather represent qx, qy, qz from the paper
// This allows to reduce the gas cost and stack footprint of the algorithm
// qx
x = addmod(mulmod(m, m, _pp), _pp - addmod(s, s, _pp), _pp);
// qy = -8*y1^4 + M(S-T)
y = addmod(mulmod(m, addmod(s, _pp - x, _pp), _pp), _pp - mulmod(8, mulmod(y, y, _pp), _pp), _pp);
// qz = 2*y1*z1
z = mulmod(2, mulmod(_y, _z, _pp), _pp);
return (x, y, z);
}
/// @dev Multiply point (x, y, z) times d.
/// @param _d scalar to multiply
/// @param _x coordinate x of P1
/// @param _y coordinate y of P1
/// @param _z coordinate z of P1
/// @param _aa constant of curve
/// @param _pp the modulus
/// @return (qx, qy, qz) d*P1 in Jacobian
function jacMul(
uint256 _d,
uint256 _x,
uint256 _y,
uint256 _z,
uint256 _aa,
uint256 _pp)
internal pure returns (uint256, uint256, uint256)
{
// Early return in case that _d == 0
if (_d == 0) {
return (_x, _y, _z);
}
uint256 remaining = _d;
uint256 qx = 0;
uint256 qy = 0;
uint256 qz = 1;
// Double and add algorithm
while (remaining != 0) {
if ((remaining & 1) != 0) {
(qx, qy, qz) = jacAdd(
qx,
qy,
qz,
_x,
_y,
_z,
_pp);
}
remaining = remaining / 2;
(_x, _y, _z) = jacDouble(
_x,
_y,
_z,
_aa,
_pp);
}
return (qx, qy, qz);
}
function Pedersen(uint256[2] memory G , uint256[2] memory H, uint256 value,uint256 blinding) internal returns (uint256[2] memory){
uint256 a;
uint256 b;
uint256 c;
uint256 d;
uint256 x;
uint256 y;
uint256[2] memory Com;
(a,b)=ecMul(
value,
G[0],
G[1]
);
(c,d)=ecMul(
blinding,
H[0],
H[1]);
(x,y)=ecAdd(
a,
b,
c,
d);
Com[0]=x;
Com[1]=y;
return Com;
}
}