forked from vaibhavshukla182/Brain-MRI-Segmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
executable file
·180 lines (171 loc) · 7.75 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import numpy as np
import nibabel as nib
import cv2 as cv
import torch
from torch.utils import data
from torchvision.transforms import transforms
from data_loader.preprocess import readVol,to_uint8,IR_to_uint8,histeq,preprocessed,get_stacked,rotate,calc_crop_region,calc_max_region_list,crop,get_edge
import os
import argparse
from torch.autograd import Variable
from models.fcn_xu import fcn_mul
class MR18loader_test(data.Dataset):
def __init__(self,T1_path,IR_path,T2_path,is_transform,is_crop,is_hist,forest):
self.T1_path=T1_path
self.IR_path=IR_path
self.T2_path=T2_path
self.is_transform=is_transform
self.is_crop=is_crop
self.is_hist=is_hist
self.forest=forest
self.n_classes=11
self.T1mean=0.0
self.IRmean=0.0
self.T2mean=0.0
#read data
T1_nii=to_uint8(readVol(self.T1_path))
IR_nii=IR_to_uint8(readVol(self.IR_path))
T2_nii=to_uint8(readVol(self.T2_path))
#histeq
if self.is_hist:
T1_nii=histeq(T1_nii)
#stack
T1_stack_list=get_stacked(T1_nii,self.forest)
IR_stack_list=get_stacked(IR_nii,self.forest)
T2_stack_list=get_stacked(T2_nii,self.forest)
#crop
if self.is_crop:
region_list=calc_max_region_list(calc_crop_region(T1_stack_list,50,5),self.forest)
self.region_list=region_list
T1_stack_list=crop(T1_stack_list,region_list)
IR_stack_list=crop(IR_stack_list,region_list)
T2_stack_list=crop(T2_stack_list,region_list)
#get mean
T1mean,IRmean,T2mean=0.0,0.0,0.0
for samples in T1_stack_list:
for stacks in samples:
T1mean=T1mean+np.mean(stacks)
self.T1mean=T1mean/(len(T1_stack_list)*len(T1_stack_list[0]))
for samples in IR_stack_list:
for stacks in samples:
IRmean=IRmean+np.mean(stacks)
self.IRmean=IRmean/(len(IR_stack_list)*len(IR_stack_list[0]))
for samples in T2_stack_list:
for stacks in samples:
T2mean=T2mean+np.mean(stacks)
self.T2mean=T2mean/(len(T2_stack_list)*len(T2_stack_list[0]))
#transform
if self.is_transform:
for stack_index in range(len(T1_stack_list)):
T1_stack_list[stack_index], \
IR_stack_list[stack_index], \
T2_stack_list[stack_index]= \
self.transform( \
T1_stack_list[stack_index], \
IR_stack_list[stack_index], \
T2_stack_list[stack_index])
# data ready
self.T1_stack_list=T1_stack_list
self.IR_stack_list=IR_stack_list
self.T2_stack_list=T2_stack_list
def __len__(self):
return 48
def __getitem__(self,index):
return self.region_list[index],self.T1_stack_list[index],self.IR_stack_list[index],self.T2_stack_list[index]
def transform(self,imgT1,imgIR,imgT2):
imgT1=torch.from_numpy((imgT1.transpose(2,0,1).astype(np.float)-self.T1mean)/255.0).float()
imgIR=torch.from_numpy((imgIR.transpose(2,0,1).astype(np.float)-self.IRmean)/255.0).float()
imgT2=torch.from_numpy((imgT2.transpose(2,0,1).astype(np.float)-self.T2mean)/255.0).float()
return imgT1,imgIR,imgT2
def test(args):
os.environ["CUDA_VISIBLE_DEVICES"]=str(args.gpu_id)
# io vols
srcvol=nib.load(args.T1_path)
outvol=np.zeros((240,240,48),np.uint8)
# data loader
loader=MR18loader_test(T1_path=args.T1_path,IR_path=args.IR_path,T2_path=args.T2_path,is_transform=True,is_crop=True,is_hist=True,forest=3)
testloader=data.DataLoader(loader,batch_size=1,num_workers=1,shuffle=False)
# model setup
n_classes = loader.n_classes
model_1=fcn_mul(n_classes=n_classes)
model_2=fcn_mul(n_classes=n_classes)
model_3=fcn_mul(n_classes=n_classes)
model_4=fcn_mul(n_classes=n_classes)
model_5=fcn_mul(n_classes=n_classes)
model_6=fcn_mul(n_classes=n_classes)
model_7=fcn_mul(n_classes=n_classes)
model_1.cuda()
model_2.cuda()
model_3.cuda()
model_4.cuda()
model_5.cuda()
model_6.cuda()
model_7.cuda()
state_1 = torch.load(args.model_path_1)['model_state']
state_2 = torch.load(args.model_path_2)['model_state']
state_3 = torch.load(args.model_path_3)['model_state']
state_4 = torch.load(args.model_path_4)['model_state']
state_5 = torch.load(args.model_path_5)['model_state']
state_6 = torch.load(args.model_path_6)['model_state']
state_7 = torch.load(args.model_path_7)['model_state']
model_1.load_state_dict(state_1)
model_2.load_state_dict(state_2)
model_3.load_state_dict(state_3)
model_4.load_state_dict(state_4)
model_5.load_state_dict(state_5)
model_6.load_state_dict(state_6)
model_7.load_state_dict(state_7)
model_1.eval()
model_2.eval()
model_3.eval()
model_4.eval()
model_5.eval()
model_6.eval()
model_7.eval()
# test
for i_t,(regions_t,T1s_t,IRs_t,T2s_t) in enumerate(testloader):
T1s_t,IRs_t,T2s_t=Variable(T1s_t.cuda()),Variable(IRs_t.cuda()),Variable(T2s_t.cuda())
with torch.no_grad():
out_1=model_1(T1s_t,IRs_t,T2s_t)[0,:,:,:]
out_2=model_2(T1s_t,IRs_t,T2s_t)[0,:,:,:]
out_3=model_3(T1s_t,IRs_t,T2s_t)[0,:,:,:]
out_4=model_4(T1s_t,IRs_t,T2s_t)[0,:,:,:]
out_5=model_5(T1s_t,IRs_t,T2s_t)[0,:,:,:]
out_6=model_6(T1s_t,IRs_t,T2s_t)[0,:,:,:]
out_7=model_7(T1s_t,IRs_t,T2s_t)[0,:,:,:]
pred_1 = out_1.data.max(0)[1].cpu().numpy()
pred_2 = out_2.data.max(0)[1].cpu().numpy()
pred_3 = out_3.data.max(0)[1].cpu().numpy()
pred_4 = out_4.data.max(0)[1].cpu().numpy()
pred_5 = out_5.data.max(0)[1].cpu().numpy()
pred_6 = out_6.data.max(0)[1].cpu().numpy()
pred_7 = out_7.data.max(0)[1].cpu().numpy()
h,w=pred_1.shape[0],pred_1.shape[1]
pred=np.zeros((h,w),np.uint8)
# vote in 7 results
for y in range(h):
for x in range(w):
pred_list=np.array([pred_1[y,x],pred_2[y,x],pred_3[y,x],pred_4[y,x],pred_5[y,x],pred_6[y,x],pred_7[y,x]])
pred[y,x]=np.argmax(np.bincount(pred_list))
# padding to 240x240
pred_pad=np.zeros((240,240),np.uint8)
pred_pad[regions_t[0]:regions_t[1],regions_t[2]:regions_t[3]]=pred[0:regions_t[1]-regions_t[0],0:regions_t[3]-regions_t[2]]
outvol[:,:,i_t]=pred_pad.transpose()
# write nii.gz
nib.Nifti1Image(outvol, srcvol.affine, srcvol.header).to_filename(args.outpath)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Params')
parser.add_argument('--gpu_id', nargs='?', type=int, default=-1,help='GPU id, -1 for cpu')
parser.add_argument('--T1_path',nargs='?',type=str,default='')
parser.add_argument('--IR_path',nargs='?',type=str,default='')
parser.add_argument('--T2_path',nargs='?',type=str,default='')
parser.add_argument('--outpath',nargs='?',type=str,default='')
parser.add_argument('--model_path_1', nargs='?', type=str, default='./CV-models/FCN_MR13_val1.pkl')
parser.add_argument('--model_path_2', nargs='?', type=str, default='./CV-models/FCN_MR13_val2.pkl')
parser.add_argument('--model_path_3', nargs='?', type=str, default='./CV-models/FCN_MR13_val3.pkl')
parser.add_argument('--model_path_4', nargs='?', type=str, default='./CV-models/FCN_MR13_val4.pkl')
parser.add_argument('--model_path_5', nargs='?', type=str, default='./CV-models/FCN_MR13_val5.pkl')
parser.add_argument('--model_path_6', nargs='?', type=str, default='./CV-models/FCN_MR13_val5.pkl')
parser.add_argument('--model_path_7', nargs='?', type=str, default='./CV-models/FCN_MR13_val5.pkl')
args = parser.parse_args()
test(args)