forked from vaibhavshukla182/Brain-MRI-Segmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
validate.py
executable file
·65 lines (57 loc) · 2.47 KB
/
validate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import os
import torch
import argparse
import numpy as np
import torch.nn as nn
import cv2 as cv
import nibabel as nib
import torch.nn.functional as F
import torchvision.models as models
from torch.autograd import Variable
from torch.utils import data
from tqdm import tqdm
from fcn_xu import fcn_mul
from data_loader import MR18loader_CV
def validate(args):
os.environ["CUDA_VISIBLE_DEVICES"]=str(args.gpu_id)
print(args)
#torch.manual_seed(1337)
# get nii header
srcvol=nib.load(data_path+'training/14/pre/reg_T1.nii.gz')
# setup dataloader
data_path='../../data/'
v_loader=MR18loader_CV(root=data_path,val_num=args.val_num,is_val=True,is_transform=True,is_rotate=False,is_crop=True,is_histeq=True,forest=args.num_forest)
n_classes=v_loader.n_classes
valloader=data.DataLoader(v_loader,batch_size=1,num_workers=1,shuffle=False)
# setup model
model=fcn_mul(n_classes=n_classes)
model.cuda()
state = torch.load(args.model_path)['model_state']
model.load_state_dict(state)
model.eval()
# start predict
pred_out=np.zeros((240,240,48),np.uint8)
for i_val,(regions,T1s,IRs,T2s,lbls) in tqdm(enumerate(valloader)):
print(regions)
T1s,IRs,T2s=Variable(T1s.cuda()),Variable(IRs.cuda()),Variable(T2s.cuda())
with torch.no_grad():
output_slice=model(T1s,IRs,T2s)[0,:,:,:]
pred_slice=np.zeros((output_slice.shape[1],output_slice.shape[2]),np.uint8)
pred_slice=output_slice.data.max(0)[1].cpu().numpy()
pred_out[regions[0]:regions[1],regions[2]:regions[3],i_val]= \
pred_slice[0:regions[1]-regions[0],0:regions[3]-regions[2]]
pred_out[:,:,i_val]=pred_out[:,:,i_val].transpose()
nib.Nifti1Image(pred_out,srcvol.affine,srcvol.header).to_filename('evaluation/result.nii')
print('predicted')
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Params')
parser.add_argument('--gpu_id', nargs='?', type=int, default=-1,
help='GPU id, -1 for cpu')
parser.add_argument('--model_path', nargs='?', type=str, default='FCN_MR13_best_model.pkl',
help='Path to the saved model')
parser.add_argument('--val_num', nargs='?', type=int, default=1,
help='which sample to be validated')
parser.add_argument('--num_forest', nargs='?', type=int, default=3,
help='how much slices to be stacked')
args = parser.parse_args()
validate(args)