-
Notifications
You must be signed in to change notification settings - Fork 0
/
backpropagation.py
215 lines (158 loc) · 6.47 KB
/
backpropagation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import numpy as np
from random import random
class MLP(object):
"""A Multilayer Perceptron class.
"""
def __init__(self, num_inputs=3, hidden_layers=[3, 3], num_outputs=2):
"""Constructor for the MLP. Takes the number of inputs,
a variable number of hidden layers, and number of outputs
Args:
num_inputs (int): Number of inputs
hidden_layers (list): A list of ints for the hidden layers
num_outputs (int): Number of outputs
"""
self.num_inputs = num_inputs
self.hidden_layers = hidden_layers
self.num_outputs = num_outputs
# create a generic representation of the layers
layers = [num_inputs] + hidden_layers + [num_outputs]
# create random connection weights for the layers
weights = []
for i in range(len(layers) - 1):
w = np.random.rand(layers[i], layers[i + 1])
weights.append(w)
self.weights = weights
# save derivatives per layer
derivatives = []
for i in range(len(layers) - 1):
d = np.zeros((layers[i], layers[i + 1]))
derivatives.append(d)
self.derivatives = derivatives
# save activations per layer
activations = []
for i in range(len(layers)):
a = np.zeros(layers[i])
activations.append(a)
self.activations = activations
def forward_propagate(self, inputs):
"""Computes forward propagation of the network based on input signals.
Args:
inputs (ndarray): Input signals
Returns:
activations (ndarray): Output values
"""
# the input layer activation is just the input itself
activations = inputs
# save the activations for backpropogation
self.activations[0] = activations
# iterate through the network layers
for i, w in enumerate(self.weights):
# calculate matrix multiplication between previous activation and weight matrix
net_inputs = np.dot(activations, w)
# apply sigmoid activation function
activations = self._sigmoid(net_inputs)
# save the activations for backpropogation
self.activations[i + 1] = activations
# return output layer activation
return activations
def back_propagate(self, error):
"""Backpropogates an error signal.
Args:
error (ndarray): The error to backprop.
Returns:
error (ndarray): The final error of the input
"""
# iterate backwards through the network layers
for i in reversed(range(len(self.derivatives))):
# get activation for previous layer
activations = self.activations[i+1]
# apply sigmoid derivative function
delta = error * self._sigmoid_derivative(activations)
# reshape delta as to have it as a 2d array
delta_re = delta.reshape(delta.shape[0], -1).T
# get activations for current layer
current_activations = self.activations[i]
# reshape activations as to have them as a 2d column matrix
current_activations = current_activations.reshape(current_activations.shape[0],-1)
# save derivative after applying matrix multiplication
self.derivatives[i] = np.dot(current_activations, delta_re)
# backpropogate the next error
error = np.dot(delta, self.weights[i].T)
def train(self, inputs, targets, epochs, learning_rate):
"""Trains model running forward prop and backprop
Args:
inputs (ndarray): X
targets (ndarray): Y
epochs (int): Num. epochs we want to train the network for
learning_rate (float): Step to apply to gradient descent
"""
# now enter the training loop
for i in range(epochs):
sum_errors = 0
# iterate through all the training data
for j, input in enumerate(inputs):
target = targets[j]
# activate the network!
output = self.forward_propagate(input)
error = target - output
self.back_propagate(error)
# now perform gradient descent on the derivatives
# (this will update the weights
self.gradient_descent(learning_rate)
# keep track of the MSE for reporting later
sum_errors += self._mse(target, output)
# Epoch complete, report the training error
print("Error: {} at epoch {}".format(sum_errors / len(items), i+1))
print("Training complete!")
print("=====")
def gradient_descent(self, learningRate=1):
"""Learns by descending the gradient
Args:
learningRate (float): How fast to learn.
"""
# update the weights by stepping down the gradient
for i in range(len(self.weights)):
weights = self.weights[i]
derivatives = self.derivatives[i]
weights += derivatives * learningRate
def _sigmoid(self, x):
"""Sigmoid activation function
Args:
x (float): Value to be processed
Returns:
y (float): Output
"""
y = 1.0 / (1 + np.exp(-x))
return y
def _sigmoid_derivative(self, x):
"""Sigmoid derivative function
Args:
x (float): Value to be processed
Returns:
y (float): Output
"""
return x * (1.0 - x)
def _mse(self, target, output):
"""Mean Squared Error loss function
Args:
target (ndarray): The ground trut
output (ndarray): The predicted values
Returns:
(float): Output
"""
return np.average((target - output) ** 2)
if __name__ == "__main__":
# create a dataset to train a network for the sum operation
items = np.array([[random()/2 for _ in range(2)] for _ in range(1000)])
targets = np.array([[i[0] + i[1]] for i in items])
# create a Multilayer Perceptron with one hidden layer
mlp = MLP(2, [5], 1)
# train network
mlp.train(items, targets, 50, 0.1)
# create dummy data
input = np.array([0.3, 0.1])
target = np.array([0.4])
# get a prediction
output = mlp.forward_propagate(input)
print()
print("Our network believes that {} + {} is equal to {}".format(input[0], input[1], output[0]))