-
Notifications
You must be signed in to change notification settings - Fork 0
/
cnn-genre-classifier.py
146 lines (99 loc) · 4.42 KB
/
cnn-genre-classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
from tensorflow.python.keras.engine.sequential import Sequential
from tensorflow.python.keras.layers.normalization import BatchNormalization
import json
import numpy as np
from sklearn.model_selection import train_test_split
import tensorflow.keras as keras
import matplotlib.pyplot as plt
# path to json file that stores MFCCs and genre labels for each processed segment
DATA_PATH = 'data_10.json'
def load_data(data_path):
with open(data_path, "r") as fp:
data = json.load(fp)
# convert lists to numpy arrays
X = np.array(data["mfcc"])
y = np.array(data["labels"])
print("Data succesfully loaded!")
return X, y
def plot_history(history):
"""Plots accuracy/loss for training/validation set as a function of the epochs
:param history: Training history of model
:return:
"""
fig, axs = plt.subplots(2)
# create accuracy sublpot
axs[0].plot(history.history["accuracy"], label="train accuracy")
axs[0].plot(history.history["val_accuracy"], label="test accuracy")
axs[0].set_ylabel("Accuracy")
axs[0].legend(loc="lower right")
axs[0].set_title("Accuracy eval")
# create error sublpot
axs[1].plot(history.history["loss"], label="train error")
axs[1].plot(history.history["val_loss"], label="test error")
axs[1].set_ylabel("Error")
axs[1].set_xlabel("Epoch")
axs[1].legend(loc="upper right")
axs[1].set_title("Error eval")
plt.show()
def prepare_datasets(test_size, validation_size):
# load data
X, y = load_data(DATA_PATH)
# create train, validation, and test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size)
X_train, X_validation, y_train, y_validation = train_test_split(X_train, y_train, test_size=validation_size)
# add an axis to input sets
X_train = X_train[..., np.newaxis]
X_test = X_test[..., np.newaxis]
X_validation = X_validation[..., np.newaxis]
return X_train, X_validation, X_test, y_train, y_validation, y_test
def build_model(input_shape):
# build network topology
model = keras.Sequential()
# 1st conv layer
model.add(keras.layers.Conv2D(32, (3, 3), activation='relu', input_shape=input_shape))
model.add(keras.layers.MaxPooling2D((3, 3), strides=(2,2), padding='same'))
model.add(keras.layers.BatchNormalization())
# 2nd conv layer
model.add(keras.layers.Conv2D(32, (3, 3), activation='relu', input_shape=input_shape))
model.add(keras.layers.MaxPooling2D((3, 3), strides=(2,2), padding='same'))
model.add(keras.layers.BatchNormalization())
# 3rd conv layer
model.add(keras.layers.Conv2D(32, (2, 2), activation='relu', input_shape=input_shape))
model.add(keras.layers.MaxPooling2D((2, 2), strides=(2,2), padding='same'))
model.add(keras.layers.BatchNormalization())
# flatten output and feed it to the dense layer
model.add(keras.layers.Flatten())
model.add(keras.layers.Dense(64, activation='relu'))
model.add(keras.layers.Dropout(0.3))
# output layer
model.add(keras.layers.Dense(11, activation='softmax'))
return model
def predict(model, X, y):
# add a dimension to input data for sample - model. predict() expects a 4d array
X = X[np.newaxis, ...] # array shape (1, 130, 13, 1)
prediction = model.predict(X)
# get index with max value
predicted_index = np.argmax(prediction, axis=1)
print(f'Target: {y}, Predicted Label: {predicted_index}')
if __name__ == '__main__':
# get train, validation, test splits
X_train, X_validation, X_test, y_train, y_validation, y_test = prepare_datasets(0.25, 0.2)
# create network
input_shape = X_train.shape[1], X_train.shape[2], X_train.shape[3]
model = build_model(input_shape)
# compile model
optimiser = keras.optimizers.Adam(learning_rate=0.0001)
model.compile(optimizer=optimiser, metrics=['accuracy'], loss='sparse_categorical_crossentropy')
model.summary()
# train model
history = model.fit(X_train, y_train, validation_data=(X_validation, y_validation), batch_size=32, epochs=30)
# plot accuracy/error for training and validation
plot_history(history)
# evaluate model on test set
test_loss, test_acc = model.evaluate(X_test, y_test, verbose=2)
print('\n Test Accuracy:', test_acc)
# pick a sample to predict
X_to_predict = X_test[100]
y_to_predict = y_test[100]
# predict sample
predict(model, X_to_predict, y_to_predict)