-
Notifications
You must be signed in to change notification settings - Fork 0
/
rnn-lstm.py
98 lines (66 loc) · 2.7 KB
/
rnn-lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import json
import numpy as np
from sklearn.model_selection import train_test_split
import tensorflow.keras as keras
import matplotlib.pyplot as plt
DATA_PATH = 'data_10.json'
def load_data(data_path):
with open(data_path, "r") as fp:
data = json.load(fp)
X = np.array(data["mfcc"])
y = np.array(data["labels"])
return X, y
def plot_history(history):
fig, axs = plt.subplots(2)
# create accuracy sublpot
axs[0].plot(history.history["accuracy"], label="train accuracy")
axs[0].plot(history.history["val_accuracy"], label="test accuracy")
axs[0].set_ylabel("Accuracy")
axs[0].legend(loc="lower right")
axs[0].set_title("Accuracy eval")
# create error sublpot
axs[1].plot(history.history["loss"], label="train error")
axs[1].plot(history.history["val_loss"], label="test error")
axs[1].set_ylabel("Error")
axs[1].set_xlabel("Epoch")
axs[1].legend(loc="upper right")
axs[1].set_title("Error eval")
plt.show()
def prepare_datasets(test_size, validation_size):
# load data
X, y = load_data(DATA_PATH)
# create train, validation and test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size)
X_train, X_validation, y_train, y_validation = train_test_split(X_train, y_train, test_size=validation_size)
return X_train, X_validation, X_test, y_train, y_validation, y_test
def build_model(input_shape):
# build network topology
model = keras.Sequential()
# 2 LSTM layers
model.add(keras.layers.LSTM(64, input_shape=input_shape, return_sequences=True))
model.add(keras.layers.LSTM(64))
# dense layer
model.add(keras.layers.Dense(64, activation='relu'))
model.add(keras.layers.Dropout(0.3))
# output layer
model.add(keras.layers.Dense(11, activation='softmax'))
return model
if __name__ == "__main__":
# get train, validation, test splits
X_train, X_validation, X_test, y_train, y_validation, y_test = prepare_datasets(0.25, 0.2)
# create network
input_shape = (X_train.shape[1], X_train.shape[2]) # 130, 13
model = build_model(input_shape)
# compile model
optimiser = keras.optimizers.Adam(learning_rate=0.0001)
model.compile(optimizer=optimiser,
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.summary()
# train model
history = model.fit(X_train, y_train, validation_data=(X_validation, y_validation), batch_size=32, epochs=30)
# plot accuracy/error for training and validation
plot_history(history)
# evaluate model on test set
test_loss, test_acc = model.evaluate(X_test, y_test, verbose=2)
print('\nTest accuracy:', test_acc)