-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathfinetune_encoder.py
761 lines (640 loc) · 26.4 KB
/
finetune_encoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
# Orignal author: Siddhant Ray
import argparse
import copy
import json
import math
import os
import pathlib
import random
import time as t
from datetime import datetime
from ipaddress import ip_address
from locale import normalize
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import pytorch_lightning as pl
import torch
import yaml
from einops import rearrange, repeat
from einops.layers.torch import Rearrange
from generate_sequences import generate_sliding_windows
from pytorch_lightning import loggers as pl_loggers
from pytorch_lightning.callbacks import ProgressBar
from pytorch_lightning.callbacks.early_stopping import EarlyStopping
from sklearn.model_selection import train_test_split
from tensorboard.backend.event_processing.event_accumulator import \
EventAccumulator
from torch import einsum, nn, optim
from torch.nn import functional as F
from torch.utils.data import DataLoader
from tqdm import tqdm
from utils import (PacketDataset, PacketDatasetEncoder,
convert_to_relative_timestamp, gelu, get_data_from_csv,
ipaddress_to_number, sliding_window_delay,
sliding_window_features, vectorize_features_to_numpy,
vectorize_features_to_numpy_memento)
random.seed(0)
np.random.seed(0)
torch.manual_seed(0)
torch.set_default_dtype(torch.float64)
# Hyper parameters from config file
with open("configs/config-encoder-test.yaml") as f:
config = yaml.load(f, Loader=yaml.FullLoader)
WEIGHTDECAY = float(config["weight_decay"])
LEARNINGRATE = float(config["learning_rate"])
DROPOUT = float(config["dropout"])
NHEAD = int(config["num_heads"])
LAYERS = int(config["num_layers"])
EPOCHS = int(config["epochs"])
BATCHSIZE = int(config["batch_size"])
LINEARSIZE = int(config["linear_size"])
LOSSFUNCTION = nn.MSELoss()
if "loss_function" in config.keys():
if config["loss_function"] == "huber":
LOSSFUNCTION = nn.HuberLoss()
if config["loss_function"] == "smoothl1":
LOSSFUNCTION = nn.SmoothL1Loss()
if config["loss_function"] == "kldiv":
LOSSFUNCTION = nn.KLDivLoss()
# Params for the sliding window on the packet data
SLIDING_WINDOW_START = 0
SLIDING_WINDOW_STEP = 1
SLIDING_WINDOW_SIZE = 1024
WINDOW_BATCH_SIZE = 5000
PACKETS_PER_EMBEDDING = 25
NUM_BOTTLENECKS = 4
TRAIN = True
PRETRAINED = True
SAVE_MODEL = True
MAKE_EPOCH_PLOT = False
TEST = True
TEST_ONLY_NEW = False
if torch.cuda.is_available():
NUM_GPUS = torch.cuda.device_count()
print("Number of GPUS: {}".format(NUM_GPUS))
else:
print("ERROR: NO CUDA DEVICE FOUND")
NUM_GPUS = 0
# TRANSFOMER CLASS TO PREDICT DELAYS
class TransformerEncoder(pl.LightningModule):
def __init__(
self,
input_size,
target_size,
loss_function,
delay_mean,
delay_std,
packets_per_embedding,
pool=False,
):
super(TransformerEncoder, self).__init__()
self.step = [0]
self.warmup_steps = 4000
# create the model with its layers
# These are our transformer layers (stay the same)
self.encoder_layer = nn.TransformerEncoderLayer(
d_model=LINEARSIZE, nhead=NHEAD, batch_first=True, dropout=DROPOUT
)
self.encoder = nn.TransformerEncoder(self.encoder_layer, num_layers=LAYERS)
# This is our prediction layer, change for finetuning as needed
self.norm1 = nn.LayerNorm(LINEARSIZE)
self.linear1 = nn.Linear(LINEARSIZE, LINEARSIZE * 4)
self.activ1 = nn.Tanh()
self.norm2 = nn.LayerNorm(LINEARSIZE * 4)
self.linear2 = nn.Linear(LINEARSIZE * 4, LINEARSIZE)
self.activ2 = nn.GELU()
self.encoderpred1 = nn.Linear(LINEARSIZE, input_size // 8)
self.activ3 = nn.ReLU()
self.encoderpred2 = nn.Linear(input_size // 8, target_size)
self.loss_func = loss_function
parameters = {
"WEIGHTDECAY": WEIGHTDECAY,
"LEARNINGRATE": LEARNINGRATE,
"EPOCHS": EPOCHS,
"BATCHSIZE": BATCHSIZE,
"LINEARSIZE": LINEARSIZE,
"NHEAD": NHEAD,
"LAYERS": LAYERS,
}
self.df = pd.DataFrame()
self.df["parameters"] = [json.dumps(parameters)]
## Mask out the nth delay in every input sequence (do it at run time)
self.input_size = input_size
self.packet_size = int(self.input_size / SLIDING_WINDOW_SIZE)
self.packets_per_embedding = packets_per_embedding
# Change into hierarchical embedding for the encoder
self.feature_transform1 = nn.Sequential(
Rearrange(
"b (seq feat) -> b seq feat",
seq=SLIDING_WINDOW_SIZE,
feat=self.packet_size,
), # Make 1000
nn.Linear(self.packet_size, LINEARSIZE),
nn.LayerNorm(LINEARSIZE), # pre-normalization
)
"""self.feature_transform1 = nn.Sequential(Rearrange('b (seq feat) -> b seq feat',
seq=SLIDING_WINDOW_SIZE // self.packets_per_embedding,
feat=self.packet_size * self.packets_per_embedding), # Make 1008 size sequences to 48,
nn.Linear(self.packet_size * self.packets_per_embedding, LINEARSIZE), # each embedding now has 21 packets
nn.LayerNorm(LINEARSIZE), # pre-normalization
)"""
self.remaining_packets1 = SLIDING_WINDOW_SIZE - 32
self.feature_transform2 = nn.Sequential(
Rearrange("b (seq n) feat -> b seq (feat n)", n=32),
nn.Linear(LINEARSIZE * 32, LINEARSIZE),
nn.LayerNorm(LINEARSIZE), # pre-normalization
)
# self.feature_transform2 = nn.Identity()
self.remaining_packets2 = (self.remaining_packets1 // 32) - 15
self.feature_transform3 = nn.Sequential(
Rearrange("b (seq n) feat -> b seq (feat n)", n=16),
nn.Linear(LINEARSIZE * 16, LINEARSIZE),
nn.LayerNorm(LINEARSIZE), # pre-normalization
)
# self.feature_transform3 = nn.Identity()
# Choose mean pooling
self.pool = pool
# Mean and std for the delay un-normalization
self.delay_mean = delay_mean
self.delay_std = delay_std
def configure_optimizers(self):
# self.optimizer = optim.Adam(self.parameters(), betas=(0.9, 0.98), eps=1e-9, lr=LEARNINGRATE, weight_decay=WEIGHTDECAY)
# Regularise only the weights, not the biases (regularisation of biases is not recommended)
weights_parameters = (
p for name, p in self.named_parameters() if "bias" not in name
)
bias_parameters = (p for name, p in self.named_parameters() if "bias" in name)
self.optimizer = optim.Adam(
[
{"params": weights_parameters, "weight_decay": WEIGHTDECAY},
{"params": bias_parameters},
],
betas=(0.9, 0.98),
eps=1e-9,
lr=LEARNINGRATE,
)
return {"optimizer": self.optimizer}
def lr_update(self):
self.step[0] += 1
learning_rate = LINEARSIZE ** (-0.5) * min(
self.step[0] ** (-0.5), self.step[0] * self.warmup_steps ** (-1.5)
)
for param_group in self.optimizer.param_groups:
param_group["lr"] = learning_rate
def forward(self, _input):
# used for the forward pass of the model
# Cast to doubletensor
scaled_input = _input.double()
# Embed every packet to the embedding dimension
scaled_input1 = self.feature_transform1(scaled_input)
# Keep first 32, re-embed the rest
scaled_input_final1 = scaled_input1[:, :32, :]
scaled_input_embed1 = scaled_input1[:, 32:, :]
# Embed seequences of 32 packets to the embedding dimension
scaled_input_2 = self.feature_transform2(scaled_input_embed1)
# Keep the first 15, re-embed the rest
scaled_input_final2 = scaled_input_2[:, :15, :]
scaled_input_embed2 = scaled_input_2[:, 15:, :]
# Embed seequences of 16 packets to the embedding dimension
scaled_input_3 = self.feature_transform3(scaled_input_embed2)
scaled_input_final3 = scaled_input_3
# Embedding the final input (stack along sequence dimension)
final_input = torch.cat(
(scaled_input_final1, scaled_input_final2, scaled_input_final3), dim=1
)
enc = self.encoder(final_input)
if self.pool:
enc1 = enc.mean(
dim=1
) # DO MEAN POOLING for the OUTPUT (as every packet is projected to embedding)
else:
enc1 = enc[
:, -1
] # Take last hidden state (as done in BERT , in ViT they take first hidden state as cls token)
# Predict the output
enc1 = self.norm1(enc1)
out = self.norm2(self.linear1(self.activ1(enc1)))
out = self.norm1(self.linear2(self.activ2(out)))
out = self.encoderpred2(self.activ3(self.encoderpred1(out)))
return out
def training_step(self, train_batch, train_idx):
X, y = train_batch
self.lr_update()
# Mask our the nth packet delay delay, which is at position seq_len - 1 (640 is sequence length)
batch_mask_index = self.input_size - 1
batch_mask = torch.tensor(
[0.0], dtype=torch.double, requires_grad=True, device=self.device
)
batch_mask = batch_mask.double()
X[:, [batch_mask_index]] = batch_mask
# Every packet separately into the transformer (project to linear if needed)
prediction = self.forward(X)
## Un-normalize the delay prediction
prediction = prediction * self.delay_std + self.delay_mean
loss = self.loss_func(prediction, y[:, [SLIDING_WINDOW_SIZE - 1]])
self.log("Train loss", loss)
return loss
def validation_step(self, val_batch, val_idx):
X, y = val_batch
batch_mask_index = self.input_size - 1
batch_mask = torch.tensor(
[0.0], dtype=torch.double, requires_grad=False, device=self.device
)
batch_mask = batch_mask.double()
X[:, [batch_mask_index]] = batch_mask
prediction = self.forward(X)
## Un-normalize the delay prediction
prediction = prediction * self.delay_std + self.delay_mean
loss = self.loss_func(prediction, y[:, [SLIDING_WINDOW_SIZE - 1]])
self.log("Val loss", loss, sync_dist=True)
return loss
def test_step(self, test_batch, test_idx):
X, y = test_batch
batch_mask_index = self.input_size - 1
batch_mask = torch.tensor(
[0.0], dtype=torch.double, requires_grad=False, device=self.device
)
batch_mask = batch_mask.double()
X[:, [batch_mask_index]] = batch_mask
prediction = self.forward(X)
## Un-normalize the delay prediction
prediction = prediction * self.delay_std + self.delay_mean
loss = self.loss_func(prediction, y[:, [SLIDING_WINDOW_SIZE - 1]])
mse_loss = nn.MSELoss()
target_size = SLIDING_WINDOW_SIZE
last_delay_pos = target_size - 1
last_actual_delay = y[:, [last_delay_pos]]
last_predicted_delay = prediction
# Get fake prediction from mean of n-1 delays
fake_prediction = torch.clone(y)
fake_prediction = fake_prediction[:, :-1].mean(axis=1, keepdims=True)
# Also use the penultimate delay as the predicted value
penultimate_prediction = torch.clone(y)
penultimate_prediction = penultimate_prediction[:, -2].unsqueeze(1)
# Also use the weighted Moving average over the sequence
ewm_data = torch.clone(y)
ewm_data = ewm_data.cpu().numpy()
weights = 0.99 ** np.arange(SLIDING_WINDOW_SIZE - 1)[::-1]
ewm_prediction = np.ma.average(ewm_data[:, :-1], axis=1, weights=weights)
ewm_prediction = np.expand_dims(ewm_prediction, 1)
last_delay_loss = mse_loss(last_actual_delay, last_predicted_delay)
self.log("Test loss", loss, sync_dist=True)
return {
"Test loss": loss,
"last_delay_loss": last_delay_loss,
"last_predicted_delay": last_predicted_delay,
"last_actual_delay": last_actual_delay,
"fake_predicted_delay": fake_prediction,
"penultimate_predicted_delay": penultimate_prediction,
"ewm_predicted_delay": torch.tensor(
ewm_prediction, dtype=torch.double, device=self.device
),
}
def predict_step(self, test_batch, test_idx, dataloader_idx=0):
X, y = test_batch
prediction = self.forward(X)
return prediction
def training_epoch_end(self, outputs):
loss_tensor_list = [item["loss"].to("cpu").numpy() for item in outputs]
# print(loss_tensor_list, len(loss_tensor_list))
self.log(
"Avg loss per epoch",
np.mean(np.array(loss_tensor_list)),
on_step=False,
on_epoch=True,
)
def test_epoch_end(self, outputs):
last_delay_losses = []
last_predicted_delay = []
last_actual_delay = []
fake_last_delay = []
penultimate_predicted_delay = []
ewm_predicted_delay = []
for output in outputs:
last_packet_losses = list(
output["last_delay_loss"].cpu().detach().numpy()
) # Losses on last delay only
preds = list(
output["last_predicted_delay"].cpu().detach().numpy()
) # predicted last delays
labels = list(
output["last_actual_delay"].cpu().detach().numpy()
) # actual last delays
fakes = list(
output["fake_predicted_delay"].cpu().detach().numpy()
) # fake last delays
penultimate_preds = list(
output["penultimate_predicted_delay"].cpu().detach().numpy()
) # predicted penultimate delays
ewm_preds = list(
output["ewm_predicted_delay"].cpu().detach().numpy()
) # predicted penultimate delays
last_delay_losses.extend(last_packet_losses)
last_predicted_delay.extend(preds)
last_actual_delay.extend(labels)
fake_last_delay.extend(fakes)
penultimate_predicted_delay.extend(penultimate_preds)
ewm_predicted_delay.extend(ewm_preds)
print()
print(
"Check lengths for all as sanity ",
len(last_predicted_delay),
len(last_actual_delay),
len(fake_last_delay),
)
print(
"Mean loss on last delay (averaged from batches) is : ",
np.mean(np.array(last_delay_losses)),
)
last_predicted_delay = np.array(last_predicted_delay)
last_actual_delay = np.array(last_actual_delay)
losses_array = np.square(np.subtract(last_predicted_delay, last_actual_delay))
print(
"Mean loss on last delay (averaged from items) is : ", np.mean(losses_array)
)
print("99%%ile loss is : ", np.quantile(losses_array, 0.99))
fake_last_delay = np.array(fake_last_delay)
fake_losses_array = np.square(np.subtract(fake_last_delay, last_actual_delay))
print(
"Mean loss on ARMA predicted last delay (averaged from items) is : ",
np.mean(fake_losses_array),
)
print(
"99%%ile loss on ARMA predicted delay is : ",
np.quantile(fake_losses_array, 0.99),
)
penultimate_predicted_delay = np.array(penultimate_predicted_delay)
penultimate_losses_array = np.square(
np.subtract(penultimate_predicted_delay, last_actual_delay)
)
print(
"Mean loss on penultimate predicted last delay (averaged from items) is : ",
np.mean(penultimate_losses_array),
)
print(
"99%%ile loss on penultimate predicted delay is : ",
np.quantile(penultimate_losses_array, 0.99),
)
ewm_predicted_delay = np.array(ewm_predicted_delay)
ewm_losses_array = np.square(
np.subtract(ewm_predicted_delay, last_actual_delay)
)
print(
"Mean loss on EWM predicted last delay (averaged from items) is : ",
np.mean(ewm_losses_array),
)
print(
"99%%ile loss on EWM predicted delay is : ",
np.quantile(ewm_losses_array, 0.99),
)
save_path = "plot_values_finetune/3features/"
np.save(
save_path
+ "transformer_last_delay_window_size_{}.npy".format(SLIDING_WINDOW_SIZE),
np.array(last_predicted_delay),
)
np.save(
save_path
+ "arma_last_delay_window_size_{}.npy".format(SLIDING_WINDOW_SIZE),
np.array(fake_last_delay),
)
np.save(
save_path
+ "penultimate_last_delay_window_size_{}.npy".format(SLIDING_WINDOW_SIZE),
np.array(penultimate_predicted_delay),
)
np.save(
save_path + "ewm_delay_window_size_{}.npy".format(SLIDING_WINDOW_SIZE),
np.array(ewm_predicted_delay),
)
np.save(
save_path
+ "actual_last_delay_window_size_{}.npy".format(SLIDING_WINDOW_SIZE),
np.array(last_actual_delay),
)
def main():
sl_win_start = SLIDING_WINDOW_START
sl_win_size = SLIDING_WINDOW_SIZE
sl_win_shift = SLIDING_WINDOW_STEP
# Hack this a bit due to size mismatch, should be fixed in the future!!
if NUM_BOTTLENECKS == 1 or NUM_BOTTLENECKS == 2:
num_features = 3 # If only timestamp, packet size and delay, else 16
input_size = sl_win_size * num_features
elif NUM_BOTTLENECKS == 4:
# Using receiver IP identifier, keep size as same for loading checkpoint, overwrite custom layers
# Should be 4 here, but we keep it 3 to enable checkpoint loading and not run into size mismatch
# We overwrite custom layers in the model class later, as they are only the linear layers, not Transformer layers
num_features = 4
input_size = sl_win_size * (num_features - 1) # Keep this as 3
output_size = 1
full_feature_arr = []
full_target_arr = []
## Get the data
full_feature_arr, full_target_arr, mean_delay, std_delay = generate_sliding_windows(
SLIDING_WINDOW_SIZE,
WINDOW_BATCH_SIZE,
num_features,
TEST_ONLY_NEW,
NUM_BOTTLENECKS,
)
if PRETRAINED:
## Model definition with delay scaling params (from pretrained model)
cpath = "checkpoints/finetune_nonpretrained_window{}.ckpt".format(
SLIDING_WINDOW_SIZE
)
model = TransformerEncoder.load_from_checkpoint(
input_size=input_size,
target_size=output_size,
loss_function=LOSSFUNCTION,
delay_mean=mean_delay,
delay_std=std_delay,
packets_per_embedding=PACKETS_PER_EMBEDDING,
pool=False,
checkpoint_path=cpath,
strict=True,
)
# Freeze or unfreeze everything!!
for params in model.parameters():
params.requires_grad = True
# Unfreeze the linear layers
for params in model.norm1.parameters():
params.requires_grad = True
for params in model.norm2.parameters():
params.requires_grad = True
for params in model.encoderpred1.parameters():
params.requires_grad = True
for params in model.encoderpred2.parameters():
params.requires_grad = True
for params in model.linear1.parameters():
params.requires_grad = True
for params in model.linear2.parameters():
params.requires_grad = True
for params in model.activ1.parameters():
params.requires_grad = True
for params in model.activ2.parameters():
params.requires_grad = True
for params in model.activ3.parameters():
params.requires_grad = True
else:
# Do not freeeze anything for non pre-trained
model = TransformerEncoder(
input_size,
output_size,
LOSSFUNCTION,
mean_delay,
std_delay,
PACKETS_PER_EMBEDDING,
pool=False,
)
## Re-write model to use custom layers with new sizes (if bigger toopology only)
if NUM_BOTTLENECKS == 4:
new_packet_size = 4
new_input_size = sl_win_size * new_packet_size
model.feature_transform1 = nn.Sequential(
Rearrange(
"b (seq feat) -> b seq feat",
seq=SLIDING_WINDOW_SIZE,
feat=new_packet_size,
), # Make 1000
nn.Linear(new_packet_size, LINEARSIZE),
nn.LayerNorm(LINEARSIZE), # pre-normalization
)
model.encoderpred1 = nn.Linear(LINEARSIZE, new_input_size // 8)
model.encoderpred2 = nn.Linear(new_input_size // 8, output_size)
full_train_vectors, test_vectors, full_train_labels, test_labels = train_test_split(
full_feature_arr, full_target_arr, test_size=0.05, shuffle=True, random_state=42
)
# print(len(full_train_vectors), len(full_train_labels))
# print(len(test_vectors), len(test_labels))
train_vectors, val_vectors, train_labels, val_labels = train_test_split(
full_train_vectors, full_train_labels, test_size=0.1, shuffle=False
)
# print(len(train_vectors), len(train_labels))
# print(len(val_vectors), len(val_labels))
# print(train_vectors[0].shape[0])
# print(train_labels[0].shape[0])
"""## Take 10% fine-tuning data only
train_vectors = train_vectors[:int(0.1*len(train_vectors))]
train_labels = train_labels[:int(0.1*len(train_labels))]"""
train_dataset = PacketDataset(train_vectors, train_labels)
val_dataset = PacketDataset(val_vectors, val_labels)
test_dataset = PacketDataset(test_vectors, test_labels)
# print(train_dataset.__getitem__(0))
train_loader = DataLoader(
train_dataset, batch_size=BATCHSIZE, shuffle=True, num_workers=4
)
val_loader = DataLoader(
val_dataset, batch_size=BATCHSIZE, shuffle=False, num_workers=4
)
test_loader = DataLoader(
test_dataset, batch_size=BATCHSIZE, shuffle=False, num_workers=4
)
# print one dataloader item!!!!
train_features, train_lbls = next(iter(train_loader))
print(f"Feature batch shape: {train_features.size()}")
print(f"Labels batch shape: {train_lbls.size()}")
feature = train_features[0]
label = train_lbls[0]
print(f"Feature: {feature}")
print(f"Label: {label}")
val_features, val_lbls = next(iter(val_loader))
print(f"Feature batch shape: {val_features.size()}")
print(f"Labels batch shape: {val_lbls.size()}")
feature = val_features[0]
label = val_lbls[0]
print(f"Feature: {feature}")
print(f"Label: {label}")
test_features, test_lbls = next(iter(test_loader))
print(f"Feature batch shape: {test_features.size()}")
print(f"Labels batch shape: {test_lbls.size()}")
feature = test_features[0]
label = test_lbls[0]
print(f"Feature: {feature}")
print(f"Label: {label}")
# Make new dir for storing logs
os.system("mkdir -p finetune_encoder_logs/")
tb_logger = pl_loggers.TensorBoardLogger(save_dir="finetune_encoder_logs/")
if NUM_GPUS >= 1:
trainer = pl.Trainer(
precision=16,
gpus=-1,
strategy="dp",
max_epochs=EPOCHS,
check_val_every_n_epoch=1,
logger=tb_logger,
callbacks=[EarlyStopping(monitor="Val loss", patience=5)],
)
else:
trainer = pl.Trainer(
gpus=None,
max_epochs=EPOCHS,
check_val_every_n_epoch=1,
logger=tb_logger,
callbacks=[EarlyStopping(monitor="Val loss", patience=5)],
)
if TRAIN:
print("Started training at:")
time = datetime.now()
print(time)
print("Removing old logs:")
os.system("rm -rf finetune_encoder_logs/lightning_logs/")
trainer.fit(model, train_loader, val_loader)
print("Finished training at:")
time = datetime.now()
print(time)
trainer.save_checkpoint(
"finetune_encoder_logs/finetune_nonpretrained_window{}.ckpt".format(
SLIDING_WINDOW_SIZE
)
)
if SAVE_MODEL:
pass
# torch.save(model, "encoder_delay_logs/finetuned_encoder_scratch.pt")
if MAKE_EPOCH_PLOT:
t.sleep(5)
log_dir = "finetune_encoder_logs/lightning_logs/version_0"
y_key = "Avg loss per epoch"
event_accumulator = EventAccumulator(log_dir)
event_accumulator.Reload()
steps = {x.step for x in event_accumulator.Scalars("epoch")}
epoch_vals = list({x.value for x in event_accumulator.Scalars("epoch")})
epoch_vals.pop()
x = list(range(len(steps)))
y = [x.value for x in event_accumulator.Scalars(y_key) if x.step in steps]
fig, ax = plt.subplots()
ax.plot(epoch_vals, y)
ax.set_xlabel("epoch")
ax.set_ylabel(y_key)
fig.savefig("lossplot_perepoch.png")
if TEST:
if TRAIN:
trainer.test(model, dataloaders=test_loader)
else:
model.eval()
if TEST_ONLY_NEW:
cpath = (
"finetune_encoder_logs/finetune_nonpretrained_window{}.ckpt".format(
SLIDING_WINDOW_SIZE
)
)
testmodel = TransformerEncoder.load_from_checkpoint(
input_size=input_size,
target_size=output_size,
loss_function=LOSSFUNCTION,
delay_mean=mean_delay,
delay_std=std_delay,
packets_per_embedding=PACKETS_PER_EMBEDDING,
pool=False,
checkpoint_path=cpath,
strict=True,
)
new_test_dataset = PacketDataset(full_feature_arr, full_target_arr)
new_test_loader = DataLoader(
new_test_dataset, batch_size=BATCHSIZE, shuffle=False, num_workers=4
)
trainer.test(testmodel, dataloaders=new_test_loader)
else:
trainer.test(model, dataloaders=test_loader)
if __name__ == "__main__":
main()