forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwrn.py
158 lines (133 loc) · 5.29 KB
/
wrn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Builds the Wide-ResNet Model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import custom_ops as ops
import numpy as np
import tensorflow as tf
def residual_block(
x, in_filter, out_filter, stride, activate_before_residual=False):
"""Adds residual connection to `x` in addition to applying BN->ReLU->3x3 Conv.
Args:
x: Tensor that is the output of the previous layer in the model.
in_filter: Number of filters `x` has.
out_filter: Number of filters that the output of this layer will have.
stride: Integer that specified what stride should be applied to `x`.
activate_before_residual: Boolean on whether a BN->ReLU should be applied
to x before the convolution is applied.
Returns:
A Tensor that is the result of applying two sequences of BN->ReLU->3x3 Conv
and then adding that Tensor to `x`.
"""
if activate_before_residual: # Pass up RELU and BN activation for resnet
with tf.variable_scope('shared_activation'):
x = ops.batch_norm(x, scope='init_bn')
x = tf.nn.relu(x)
orig_x = x
else:
orig_x = x
block_x = x
if not activate_before_residual:
with tf.variable_scope('residual_only_activation'):
block_x = ops.batch_norm(block_x, scope='init_bn')
block_x = tf.nn.relu(block_x)
with tf.variable_scope('sub1'):
block_x = ops.conv2d(
block_x, out_filter, 3, stride=stride, scope='conv1')
with tf.variable_scope('sub2'):
block_x = ops.batch_norm(block_x, scope='bn2')
block_x = tf.nn.relu(block_x)
block_x = ops.conv2d(
block_x, out_filter, 3, stride=1, scope='conv2')
with tf.variable_scope(
'sub_add'): # If number of filters do not agree then zero pad them
if in_filter != out_filter:
orig_x = ops.avg_pool(orig_x, stride, stride)
orig_x = ops.zero_pad(orig_x, in_filter, out_filter)
x = orig_x + block_x
return x
def _res_add(in_filter, out_filter, stride, x, orig_x):
"""Adds `x` with `orig_x`, both of which are layers in the model.
Args:
in_filter: Number of filters in `orig_x`.
out_filter: Number of filters in `x`.
stride: Integer specifying the stide that should be applied `orig_x`.
x: Tensor that is the output of the previous layer.
orig_x: Tensor that is the output of an earlier layer in the network.
Returns:
A Tensor that is the result of `x` and `orig_x` being added after
zero padding and striding are applied to `orig_x` to get the shapes
to match.
"""
if in_filter != out_filter:
orig_x = ops.avg_pool(orig_x, stride, stride)
orig_x = ops.zero_pad(orig_x, in_filter, out_filter)
x = x + orig_x
orig_x = x
return x, orig_x
def build_wrn_model(images, num_classes, wrn_size):
"""Builds the WRN model.
Build the Wide ResNet model from https://arxiv.org/abs/1605.07146.
Args:
images: Tensor of images that will be fed into the Wide ResNet Model.
num_classes: Number of classed that the model needs to predict.
wrn_size: Parameter that scales the number of filters in the Wide ResNet
model.
Returns:
The logits of the Wide ResNet model.
"""
kernel_size = wrn_size
filter_size = 3
num_blocks_per_resnet = 4
filters = [
min(kernel_size, 16), kernel_size, kernel_size * 2, kernel_size * 4
]
strides = [1, 2, 2] # stride for each resblock
# Run the first conv
with tf.variable_scope('init'):
x = images
output_filters = filters[0]
x = ops.conv2d(x, output_filters, filter_size, scope='init_conv')
first_x = x # Res from the beginning
orig_x = x # Res from previous block
for block_num in range(1, 4):
with tf.variable_scope('unit_{}_0'.format(block_num)):
activate_before_residual = True if block_num == 1 else False
x = residual_block(
x,
filters[block_num - 1],
filters[block_num],
strides[block_num - 1],
activate_before_residual=activate_before_residual)
for i in range(1, num_blocks_per_resnet):
with tf.variable_scope('unit_{}_{}'.format(block_num, i)):
x = residual_block(
x,
filters[block_num],
filters[block_num],
1,
activate_before_residual=False)
x, orig_x = _res_add(filters[block_num - 1], filters[block_num],
strides[block_num - 1], x, orig_x)
final_stride_val = np.prod(strides)
x, _ = _res_add(filters[0], filters[3], final_stride_val, x, first_x)
with tf.variable_scope('unit_last'):
x = ops.batch_norm(x, scope='final_bn')
x = tf.nn.relu(x)
x = ops.global_avg_pool(x)
logits = ops.fc(x, num_classes)
return logits