forked from fperazzi-zz/proSR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
325 lines (260 loc) · 10.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
from argparse import ArgumentParser
from collections import defaultdict
from easydict import EasyDict as edict
from pprint import pprint
from prosr.data import DataLoader, Dataset
from prosr.logger import info
from prosr.models.trainer import CurriculumLearningTrainer, SimultaneousMultiscaleTrainer
from prosr.utils import get_filenames, IMG_EXTENSIONS, print_current_errors,set_seed
from time import time
import numpy as np
import os
import os.path as osp
import prosr
import random
import sys
import torch
import yaml
# BASE_DIR = os.path.dirname(os.path.abspath(__file__))
# sys.path.append(osp.join(BASE_DIR, 'lib'))
def parse_args():
parser = ArgumentParser(description='training script for ProSR')
group = parser.add_mutually_exclusive_group(required=True)
group.add_argument(
'-m',
'--model',
type=str,
help='model',
choices=['prosr', 'prosrs', 'debug'])
group.add_argument(
'-c',
'--config',
type=str,
help="Configuration file in 'yaml' format.")
group.add_argument(
'-ckpt',
'--checkpoint',
type=str,
help='name of this training experiment',
)
parser.add_argument(
'--no-curriculum',
action='store_true',
help="disable curriculum learning")
parser.add_argument(
'-o',
'--output',
type=str,
help='name of this training experiment',
default=None)
parser.add_argument(
'--seed',
type=int,
help='reproducible experiments',
default=128)
parser.add_argument(
'--fast-validation',
type=int,
help='truncate number of validation images',
default=None)
parser.add_argument(
'-v',
'--visdom',
action='store_true',
default=False)
parser.add_argument(
'-p',
'--visdom-port',
type=int,
help='port used by visdom',
default=8067)
args = parser.parse_args()
if (args.model or args.config) and args.output is None:
parser.error("--model and --config requires --output.")
############# set up trainer ######################
if args.checkpoint:
args.output = osp.dirname(args.checkpoint)
return args
def load_dataset(args):
files = {'train':{},'test':{}}
for phase in ['train','test']:
for ft in ['source','target']:
if args[phase].dataset.path[ft]:
files[phase][ft] = get_filenames(
args[phase].dataset.path[ft], image_format=IMG_EXTENSIONS)
else:
files[phase][ft] = []
return files['train'],files['test']
def main(args):
set_seed(args.cmd.seed)
############### loading datasets #################
train_files,test_files = load_dataset(args)
# reduce validation size for faster training cycles
if args.test.fast_validation > -1:
for ft in ['source','target']:
test_files[ft] = test_files[ft][:args.test.fast_validation]
info('training images = %d' % len(train_files['target']))
info('validation images = %d' % len(test_files['target']))
training_dataset = Dataset(
prosr.Phase.TRAIN,
**train_files,
scale=args.data.scale,
input_size=args.data.input_size,
**args.train.dataset)
training_data_loader = DataLoader(
training_dataset, batch_size=args.train.batch_size)
if len(test_files['target']):
testing_dataset = Dataset(
prosr.Phase.VAL,
**test_files,
scale=args.data.scale,
input_size=None,
**args.test.dataset)
testing_data_loader = DataLoader(testing_dataset, batch_size=1)
else:
testing_dataset = None
testing_data_loader = None
if args.cmd.no_curriculum or len(args.data.scale) == 1:
Trainer_cl = SimultaneousMultiscaleTrainer
else:
Trainer_cl = CurriculumLearningTrainer
args.G.max_scale = np.max(args.data.scale)
trainer = Trainer_cl(
args,
training_data_loader,
save_dir=args.cmd.output,
resume_from=args.cmd.checkpoint)
log_file = os.path.join(args.cmd.output, 'loss_log.txt')
steps_per_epoch = len(trainer.training_dataset)
total_steps = trainer.start_epoch * steps_per_epoch
############# start training ###############
info('start training from epoch %d, learning rate %e' %
(trainer.start_epoch, trainer.lr))
steps_per_epoch = len(trainer.training_dataset)
errors_accum = defaultdict(list)
errors_accum_prev = defaultdict(lambda: 0)
for epoch in range(trainer.start_epoch + 1, args.train.epochs + 1):
iter_start_time = time()
trainer.set_train()
for i, data in enumerate(trainer.training_dataset):
trainer.set_input(**data)
trainer.forward()
trainer.optimize_parameters()
errors = trainer.get_current_errors()
for key, item in errors.items():
errors_accum[key].append(item)
total_steps += 1
if total_steps % args.train.io.print_errors_freq == 0:
for key, item in errors.items():
if len(errors_accum[key]):
errors_accum[key] = np.nanmean(errors_accum[key])
if np.isnan(errors_accum[key]):
errors_accum[key] = errors_accum_prev[key]
errors_accum_prev = errors_accum
t = time() - iter_start_time
iter_start_time = time()
print_current_errors(
epoch, total_steps, errors_accum, t, log_name=log_file)
if args.cmd.visdom:
lrs = {
'lr%d' % i: param_group['lr']
for i, param_group in enumerate(
trainer.optimizer_G.param_groups)
}
real_epoch = float(total_steps) / steps_per_epoch
visualizer.display_current_results(
trainer.get_current_visuals(), real_epoch)
visualizer.plot(errors_accum, real_epoch, 'loss')
visualizer.plot(lrs, real_epoch, 'lr rate', 'lr')
errors_accum = defaultdict(list)
# Save model
if epoch % args.train.io.save_model_freq == 0:
info(
'saving the model at the end of epoch %d, iters %d' %
(epoch, total_steps),
bold=True)
trainer.save(str(epoch), epoch, trainer.lr)
################# update learning rate #################
if (epoch - trainer.best_epoch) > args.train.lr_schedule_patience:
trainer.save('last_lr_%g' % trainer.lr, epoch, trainer.lr)
trainer.update_learning_rate()
# eval epochs incrementally
eval_epoch_freq = 1
################# test with validation set ##############
if testing_data_loader and epoch % eval_epoch_freq == 0:
eval_epoch_freq = min(eval_epoch_freq * 2, args.train.io.eval_epoch_freq)
with torch.no_grad():
test_start_time = time()
# use validation set
trainer.set_eval()
trainer.reset_eval_result()
for i, data in enumerate(testing_data_loader):
trainer.set_input(**data)
trainer.evaluate()
t = time() - test_start_time
test_result = trainer.get_current_eval_result()
################ visualize ###############
if args.cmd.visdom:
visualizer.plot(test_result,
float(total_steps) / steps_per_epoch,
'eval', 'psnr')
trainer.update_best_eval_result(epoch, test_result)
info(
'eval at epoch %d : ' % epoch + ' | '.join([
'{}: {:.02f}'.format(k, v)
for k, v in test_result.items()
]) + ' | time {:d} sec'.format(int(t)),
bold=True)
info(
'best so far %d : ' % trainer.best_epoch + ' | '.join([
'{}: {:.02f}'.format(k, v)
for k, v in trainer.best_eval.items()
]),
bold=True)
if trainer.best_epoch == epoch:
if len(trainer.best_eval) > 1:
if not isinstance(trainer, CurriculumLearningTrainer):
best_key = [
k for k in trainer.best_eval
if trainer.best_eval[k] == test_result[k]
]
else:
# select only upto current training scale
best_key = ["psnr_x%d" % trainer.opt.data.scale[s_idx]
for s_idx in range(trainer.current_scale_idx+1)]
best_key = [k for k in best_key
if trainer.best_eval[k] == test_result[k]]
else:
best_key = list(trainer.best_eval.keys())
trainer.save(str(epoch) + '_best_' + '_'.join(best_key), epoch,
trainer.lr)
if __name__ == '__main__':
# Parse command-line arguments
args = parse_args()
if args.config is not None:
with open(args.config) as stream:
try:
params = edict(yaml.load(stream))
except yaml.YAMLError as exc:
print(exc)
sys.exit(0)
elif args.model is not None:
params = edict(getattr(prosr, args.model + '_params'))
else:
params = torch.load(args.checkpoint + '_net_G.pth')['params']
# parameters overring
if args.fast_validation is not None:
params.test.fast_validation = args.fast_validation
del args.fast_validation
# Add command line arguments
params.cmd = edict(vars(args))
pprint(params)
if not osp.isdir(args.output):
os.makedirs(args.output)
np.save(osp.join(args.output, 'params'), params)
experiment_id = osp.basename(args.output)
info('experiment ID: {}'.format(experiment_id))
if args.visdom:
from prosr.visualizer import Visualizer
visualizer = Visualizer(experiment_id, port=args.visdom_port)
main(params)