-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathoptions.py
110 lines (95 loc) · 3.08 KB
/
options.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import tyro
from dataclasses import dataclass
from typing import Tuple, Literal, Dict, Optional
@dataclass
class Options:
### model
# Unet image input size
model_type: str = 'gamba' # or lgm
plucker_ray: bool = False
use_dino: bool = True
overfit: bool = False
input_size: int = 512 # be consistent to DINO, 336
dino_input_size: int = 336
num_input_views: int = 1 # set input view as 1
dino_name: str = 'dinov2_vitb14_reg'
dino_dim: int = 768
patch_size: int = 8
# model params
gs_num: int = 16384
token_pnum: int = 1 # partition tokens
gamba_layers: int = 14
gamba_dim: int = 512
campose_dim: int = 128
# model variants
use_triplane: bool = False
enable_triplane_epoch: int = 0
triplane_dim: int = 80
triplane_radius: float = 0.5 # 0.6 in tgs
# Unet definition
down_channels: Tuple[int, ...] = (64, 128, 256, 512, 1024, 1024)
down_attention: Tuple[bool, ...] = (False, False, False, True, True, True)
mid_attention: bool = True
up_channels: Tuple[int, ...] = (1024, 1024, 512, 256)
up_attention: Tuple[bool, ...] = (True, True, True, False)
# Unet output size, dependent on the input_size and U-Net structure!
splat_size: int = 64
# gaussian render size
output_size: int = 512 # output size
### dataset
# data mode (only support s3 now)
data_mode: Literal['s3'] = 's3'
# fovy of the dataset
fovy: float = 49.1 # 49.1
# camera near plane
znear: float = 0.5
# camera far plane
zfar: float = 2.5
# number of all views (input + output)
num_views: int = 3
# number of views
# num_input_views : int = 1
num_output_views: int = 2
# camera radius
cam_radius: float = 1.5 # to better use [-1, 1]^3 space
# num workers
num_workers: int = 8
### training
# workspace
workspace: str = 'mnt/xuanyuyi/results/workspace'
# resume
resume: Optional[str] = None # a scan instead of convolution
batch_size: int = 16
# gradient accumulation
gradient_accumulation_steps: int = 1
# training epochs
num_epochs: int = 400
# lpips loss weight
lambda_lpips: float = 0.5
# gradient clip
gradient_clip: float = 1.0
# mixed precision
mixed_precision: str = 'bf16' # bf16
# learning rate
lr: float = 2e-3
# augmentation prob for grid distortion
prob_grid_distortion: float = 0.5
# augmentation prob for camera jitter
prob_cam_jitter: float = 0.5
warmup_epochs: int = 10
### testing
# test image path
test_path: Optional[str] = None
### misc
# nvdiffrast backend setting
force_cuda_rast: bool = False
# render fancy video with gaussian scaling effect
fancy_video: bool = False
# renderig resolution zoom factor for patched rendering
zoom: int = 3
# all the default settings
config_defaults: Dict[str, Options] = {}
config_doc: Dict[str, str] = {}
config_doc['gamba'] = 'the default settings for Gamba'
config_defaults['gamba'] = Options()
AllConfigs = tyro.extras.subcommand_type_from_defaults(config_defaults, config_doc)