forked from kamyu104/LeetCode-Solutions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpainting-a-grid-with-three-different-colors.cpp
331 lines (317 loc) · 14.3 KB
/
painting-a-grid-with-three-different-colors.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
// Time: O(m * 2^m + 3^m + 2^(3 * m) * logn) = O(2^(3 * m) * logn)
// Space: O(2^(2 * m))
// better complexity for small m, super large n
class Solution {
public:
int colorTheGrid(int m, int n) {
if (m > n) {
swap(m, n);
}
const int basis = pow(3, m - 1);
vector<int> masks;
backtracking(-1, -1, basis, &masks); // Time: O(2^m), Space: O(2^m)
assert(size(masks) == 3 * pow(2, m - 1));
unordered_map<int, int> lookup;
for (const auto& mask : masks) { // Time: O(m * 2^m)
lookup[mask] = normalize(basis, mask);
}
unordered_map<int, int> normalized_mask_cnt;
for (const auto& mask : masks) {
normalized_mask_cnt[lookup[mask]] = (normalized_mask_cnt[lookup[mask]] + 1) % MOD;
}
assert(size(normalized_mask_cnt) == 3 * pow(2, m - 1) / 3 / (m >= 2 ? 2 : 1)); // divided by 3 * 2 is since the first two colors are normalized to speed up performance
unordered_map<int, vector<int>> adj;
for (const auto& [mask, _] : normalized_mask_cnt) { // O(3^m) leaves which are all in depth m => Time: O(3^m), Space: O(3^m)
backtracking(mask, -1, basis, &adj[mask]);
}
unordered_map<int, unordered_map<int, int>> normalized_adj;
for (const auto& [mask1, mask2s] : adj) {
for (const auto& mask2 : mask2s) {
normalized_adj[mask1][lookup[mask2]] = (normalized_adj[mask1][lookup[mask2]] + 1) % MOD;
}
}
// divided by 3 * 2 is since the first two colors in upper row are normalized to speed up performance
assert(accumulate(cbegin(normalized_adj), cend(normalized_adj), 0,
[](const auto& total, const auto& kvp) {
return total + size(kvp.second);
}) <= 2 * pow(3, m) / 3 / 2);
// since first two colors in lower row which has at most 3 choices could be also normalized, lower bound is upper bound divided by at most 3
assert(accumulate(cbegin(normalized_adj), cend(normalized_adj), 0,
[](const auto& total, const auto& kvp) {
return total + size(kvp.second);
}) >= 2 * pow(3, m) / 3 / 2 / 3);
vector<vector<int>> matrix;
vector<vector<int>> counts(1);
for (const auto& [mask1, cnt] : normalized_mask_cnt) {
matrix.emplace_back();
for (const auto& [mask2, cnt] : normalized_mask_cnt) {
matrix.back().emplace_back(normalized_adj[mask1][mask2]);
}
counts[0].emplace_back(cnt);
}
const auto& result = matrixMult(counts, matrixExpo(matrix, n - 1)); // Time: O((2^m)^3 * logn), Space: O((2^m)^2)
return accumulate(cbegin(result[0]), cend(result[0]), 0,
[](const auto& total, const auto& x) {
return (total + x) % MOD;
}); // Time: O(2^m)
}
private:
void backtracking(int mask1, int mask2, int basis, vector<int> *result) { // Time: O(2^m), Space: O(2^m)
if (!basis) {
result->emplace_back(mask2);
return;
}
for (int i = 0; i < 3; ++i) {
if ((mask1 == -1 || mask1 / basis % 3 != i) && (mask2 == -1 || mask2 / (basis * 3) % 3 != i)) {
backtracking(mask1, mask2 != -1 ? mask2 + i * basis : i * basis, basis / 3, result);
}
}
}
vector<vector<int>> matrixExpo(const vector<vector<int>>& A, int pow) {
vector<vector<int>> result(A.size(), vector<int>(A.size()));
vector<vector<int>> A_exp(A);
for (int i = 0; i < A.size(); ++i) {
result[i][i] = 1;
}
while (pow) {
if (pow % 2 == 1) {
result = matrixMult(result, A_exp);
}
A_exp = matrixMult(A_exp, A_exp);
pow /= 2;
}
return result;
}
vector<vector<int>> matrixMult(const vector<vector<int>>& A, const vector<vector<int>>& B) {
vector<vector<int>> result(A.size(), vector<int>(B[0].size()));
for (int i = 0; i < A.size(); ++i) {
for (int j = 0; j < B[0].size(); ++j) {
int64_t entry = 0;
for (int k = 0; k < B.size(); ++k) {
entry = (static_cast<int64_t>(A[i][k]) * B[k][j] % MOD + entry) % MOD;
}
result[i][j] = static_cast<int>(entry);
}
}
return result;
}
int normalize(int basis, int mask) {
unordered_map<int, int> norm;
int result = 0;
for (; basis; basis /= 3) {
int x = mask / basis % 3;
if (!norm.count(x)) {
norm[x] = size(norm);
}
result += norm[x] * basis;
}
return result;
}
static const int MOD = 1e9 + 7;
};
// Time: O(n * 3^m)
// Space: O(3^m)
// better complexity for small m, large n
class Solution2 {
public:
int colorTheGrid(int m, int n) {
static const int MOD = 1e9 + 7;
if (m > n) {
swap(m, n);
}
const int basis = pow(3, m - 1);
const auto& masks = find_masks(m, basis); // alternative of backtracking, Time: O(2^m), Space: O(2^m)
assert(size(masks) == 3 * pow(2, m - 1));
unordered_map<int, int> lookup;
for (const auto& mask : masks) { // Time: O(m * 2^m)
lookup[mask] = normalize(basis, mask);
}
unordered_map<int, int> dp;
for (const auto& mask : masks) { // normalize colors to speed up performance
++dp[lookup[mask]];
}
const auto& adj = find_adj(m, basis, dp); // alternative of backtracking, Time: O(3^m), Space: O(3^m)
// proof:
// 'o' uses the same color with its bottom-left one,
// 'x' uses the remaining color different from its left one and bottom-left one,
// k is the cnt of 'o',
// [3, 1(o), 1(x), 1(o), ..., 1(o), 1(x)] => nCr(m-1, k) * 3 * 2 * 2^k for k in xrange(m) = 3 * 2 * (2+1)^(m-1) = 2*3^m combinations
// [2, 2, 1, 2, ..., 2, 1]
// another proof:
// given previous pair of colors, each pair of '?' has 3 choices of colors
// [3, ?, ?, ..., ?] => 3 * 2 * 3^(m-1) = 2*3^m combinations
// | | |
// 3 3 3
// | | |
// [2, ?, ?, ..., ?]
unordered_map<int, unordered_map<int, int>> normalized_adj;
for (const auto& [mask1, mask2s] : adj) {
for (const auto& mask2 : mask2s) {
normalized_adj[lookup[mask1]][lookup[mask2]] = (normalized_adj[lookup[mask1]][lookup[mask2]] + 1) % MOD;
}
}
// divided by 3 * 2 is since the first two colors in upper row are normalized to speed up performance
assert(accumulate(cbegin(normalized_adj), cend(normalized_adj), 0,
[](const auto& total, const auto& kvp) {
return total + size(kvp.second);
}) <= 2 * pow(3, m) / 3 / 2);
// since first two colors in lower row which has at most 3 choices could be also normalized, lower bound is upper bound divided by at most 3
assert(accumulate(cbegin(normalized_adj), cend(normalized_adj), 0,
[](const auto& total, const auto& kvp) {
return total + size(kvp.second);
}) >= 2 * pow(3, m) / 3 / 2 / 3);
for (int i = 0; i < n - 1; ++i) { // Time: O(n * 3^m), Space: O(2^m)
assert(size(dp) == 3 * pow(2, m - 1) / 3 / (m >= 2 ? 2 : 1)); // divided by 3 * 2 is since the first two colors are normalized to speed up performance
unordered_map<int, int> new_dp;
for (const auto [mask, v] : dp) {
for (const auto& [new_mask, cnt] : normalized_adj[mask]) {
new_dp[lookup[new_mask]] = (new_dp[lookup[new_mask]] + (v * int64_t(cnt)) % MOD) % MOD;
}
}
dp = move(new_dp);
}
return accumulate(cbegin(dp), cend(dp), 0,
[](const auto& total, const auto& kvp) {
return (total + kvp.second) % MOD;
}); // Time: O(2^m)
}
private:
vector<int> find_masks(int m, int basis) { // Time: 3 + 3*2 + 3*2*2 + ... + 3*2^(m-1) = 3 * (2^m - 1) = O(2^m), Space: O(2^m)
vector<int> masks = {0};
for (int c = 0; c < m; ++c) {
vector<int> new_masks;
for (const auto& mask : masks) {
vector<bool> used(3);
if (c > 0) {
used[mask / basis] = true; // get left grid
}
for (int x = 0; x < 3; ++x) {
if (used[x]) {
continue;
}
new_masks.emplace_back((x * basis) + (mask / 3)); // encoding mask
}
}
masks = move(new_masks);
}
return masks;
}
unordered_map<int, vector<int>> find_adj(int m, int basis, const unordered_map<int, int>& dp) {
// Time: 3*2^(m-1) * (1 + 2 + 2 * (3/2) + 2 * (3/2)^2 + ... + 2 * (3/2)^(m-2)) =
// 3*2^(m-1) * (1+2*((3/2)^(m-1)-1)/((3/2)-1)) =
// 3*2^(m-1) * (1+4*((3/2)^(m-1)-1)) =
// 3*2^(m-1) * (4*(3/2)^(m-1)-3) =
// 4*3^m-9*2^(m-1) =
// O(3^m),
// Space: O(3^m)
unordered_map<int, vector<int>> adj;
for (const auto& [mask, _] : dp) { // O(2^m)
adj[mask].emplace_back(mask);
}
for (int c = 0; c < m; ++c) {
assert(accumulate(cbegin(adj), cend(adj), 0,
[](const auto& total, const auto& kvp) {
return total + size(kvp.second);
}) == (c ? pow(3, c) * pow(2, m - (c - 1)) : 3 * pow(2, m - 1)) / 3 / (m >= 2 ? 2 : 1)); // divided by 3 * 2 is since the first two colors are normalized to speed up performance
unordered_map<int, vector<int>> new_adj;
for (const auto& [mask1, mask2s] : adj) {
for (const auto& mask : mask2s) {
vector<bool> used(3);
used[mask % 3] = true; // get up grid
if (c > 0) {
used[mask / basis] = true; // get left grid
}
for (int x = 0; x < 3; ++x) {
if (used[x]) {
continue;
}
new_adj[mask1].emplace_back((x * basis) + (mask / 3)); // encoding mask
}
}
}
adj = move(new_adj);
}
return adj;
}
int normalize(int basis, int mask) {
unordered_map<int, int> norm;
int result = 0;
for (; basis; basis /= 3) {
int x = mask / basis % 3;
if (!norm.count(x)) {
norm[x] = size(norm);
}
result += norm[x] * basis;
}
return result;
}
};
// Time: (m * n grids) * (O(3*3*2^(m-2)) possible states per grid) = O(n * m * 2^m)
// Space: O(3*3*2^(m-2)) = O(2^m)
// better complexity for large m, large n
class Solution3 {
public:
int colorTheGrid(int m, int n) {
static const int MOD = 1e9 + 7;
if (m > n) {
swap(m, n);
}
const int basis = pow(3, m - 1);
int b = basis;
unordered_map<int, unordered_map<int, int>> lookup;
unordered_map<int, int> dp = {{0, 1}};
for (int idx = 0; idx < m * n; ++idx) {
int r = idx / m;
int c = idx % m;
// sliding window with size m doesn't cross rows:
// [3, 2, ..., 2] => 3*2^(m-1) combinations
assert(r != 0 || c != 0 || size(dp) == 1);
assert(r != 0 || c == 0 || size(dp) == 3 * pow(2, c - 1) / 3 / (c >= 2 ? 2 : 1)); // divided by 3 * 2 is since the first two colors are normalized to speed up performance
assert(r == 0 || c != 0 || size(dp) == 3 * pow(2, m - 1) / 3 / (m >= 2 ? 2 : 1)); // divided by 3 * 2 is since the first two colors are normalized to speed up performance
// sliding window with size m crosses rows:
// [*, ..., *, *, 3, 2, ..., 2] => 3*3 * 2^(m-2) combinations
// [2, ..., 2, 3, *, *, ..., *]
assert(r == 0 || c == 0 || size(dp) == (m == 1 ? 1 : m == 2 ? 2 : (3 * 3 * pow(2, m - 2) / 3 / 2))); // divided by 3 * 2 for m >= 3 is since the first two colors of window are normalized to speed up performance
unordered_map<int, int> new_dp;
for (const auto [mask, v] : dp) {
vector<bool> used(3);
if (r > 0) {
used[mask % 3] = true; // get up grid
}
if (c > 0) {
used[mask / basis] = true; // get left grid
}
for (int x = 0; x < 3; ++x) {
if (used[x]) {
continue;
}
const auto new_mask = normalize(basis / b, ((x * basis) + (mask / 3)) / b, &lookup) * b; // encoding mask
new_dp[new_mask] = (new_dp[new_mask] + v) % MOD;
}
}
if (b > 1) {
b /= 3;
}
dp = move(new_dp);
}
return accumulate(cbegin(dp), cend(dp), 0,
[](const auto& total, const auto& kvp) {
return (total + kvp.second) % MOD;
}); // Time: O(2^m)
}
int normalize(int basis, int mask, unordered_map<int, unordered_map<int, int>> *lookup) { // compute and cache, at most O(3*2^(m-3)) time and space
if (!(*lookup)[basis].count(mask)) {
unordered_map<int, int> norm;
int result = 0;
for (int b = basis; b; b /= 3) {
int x = mask / b % 3;
if (!norm.count(x)) {
norm[x] = size(norm);
}
result += norm[x] * b;
}
(*lookup)[basis][mask] = result;
}
return (*lookup)[basis][mask];
}
};