forked from kamyu104/LeetCode-Solutions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcount-pairs-of-nodes.py
71 lines (64 loc) · 2.18 KB
/
count-pairs-of-nodes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# Time: O(n + e + q)
# Space: O(n + e)
import collections
import itertools
# pure counting solution
class Solution(object):
def countPairs(self, n, edges, queries):
"""
:type n: int
:type edges: List[List[int]]
:type queries: List[int]
:rtype: List[int]
"""
degree = [0]*(n+1)
shared = collections.Counter((min(n1, n2), max(n1, n2)) for n1, n2 in edges)
for u, v in edges:
degree[u] += 1
degree[v] += 1
cnt = [0]*(2*(max(degree[1:])+1))
count = collections.Counter(degree[1:])
for i, j in itertools.product(count, count): # Time: O(d^2) = O(e)
if i < j:
cnt[i+j] += count[i]*count[j]
elif i == j:
cnt[i+j] += count[i]*(count[i]-1)//2
for (i, j), shared_degree in shared.iteritems():
cnt[degree[i]+degree[j]] -= 1
cnt[degree[i]+degree[j]-shared_degree] += 1
for i in reversed(xrange(len(cnt)-1)): # accumulate
cnt[i] += cnt[i+1]
return [cnt[q+1] if q+1 < len(cnt) else 0 for q in queries]
# Time: O(nlogn + q * (n + e))
# Space: O(n + e)
import collections
# two pointers solution
class Solution2(object):
def countPairs(self, n, edges, queries):
"""
:type n: int
:type edges: List[List[int]]
:type queries: List[int]
:rtype: List[int]
"""
degree = [0]*(n+1)
shared = collections.Counter((min(n1, n2), max(n1, n2)) for n1, n2 in edges)
for n1, n2 in edges:
degree[n1] += 1
degree[n2] += 1
sorted_degree = sorted(degree)
result = []
for k, q in enumerate(queries):
left, right = 1, n
cnt = 0
while left < right:
if q < sorted_degree[left]+sorted_degree[right]:
cnt += right-left
right -= 1
else:
left += 1
for (i, j), shared_degree in shared.iteritems():
if degree[i]+degree[j]-shared_degree <= q < degree[i]+degree[j]:
cnt -= 1
result.append(cnt)
return result