forked from kamyu104/LeetCode-Solutions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdistribute-repeating-integers.py
70 lines (65 loc) · 2.62 KB
/
distribute-repeating-integers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# Time: O(n + m * 3^m)
# Space: O(n + 2^m)
import collections
import random
class Solution(object):
def canDistribute(self, nums, quantity):
"""
:type nums: List[int]
:type quantity: List[int]
:rtype: bool
"""
def nth_element(nums, n, compare=lambda a, b: a < b):
def tri_partition(nums, left, right, target, compare):
mid = left
while mid <= right:
if nums[mid] == target:
mid += 1
elif compare(nums[mid], target):
nums[left], nums[mid] = nums[mid], nums[left]
left += 1
mid += 1
else:
nums[mid], nums[right] = nums[right], nums[mid]
right -= 1
return left, right
left, right = 0, len(nums)-1
while left <= right:
pivot_idx = random.randint(left, right)
pivot_left, pivot_right = tri_partition(nums, left, right, nums[pivot_idx], compare)
if pivot_left <= n <= pivot_right:
return
elif pivot_left > n:
right = pivot_left-1
else: # pivot_right < n.
left = pivot_right+1
count = collections.Counter(nums)
total = (1<<len(quantity))-1
requirement = [0]*(total+1)
for mask in xrange(len(requirement)): # Time: O(2^m)
base = 1
for i in xrange(len(quantity)): # Time: O(m)
if mask&base:
requirement[mask] += quantity[i];
base <<= 1
dp = [[0]*(total+1) for _ in xrange(2)]
dp[0][0] = 1
i = 0
cnts = count.values()
if len(quantity) < len(cnts): # at most use top m cnts
nth_element(cnts, len(quantity)-1, lambda a, b: a > b)
cnts = cnts[:len(quantity)]
for cnt in cnts: # Time: O(m)
dp[(i+1)%2] = [0]*(total+1)
# submask enumeration:
# => sum(nCr(m, k) * 2^k for k in xrange(m+1)) = (1 + 2)^m = 3^m
# => Time: O(3^m), see https://cp-algorithms.com/algebra/all-submasks.html
for mask in reversed(xrange(total+1)):
dp[(i+1)%2][mask] |= dp[i%2][mask]
submask = mask
while submask > 0:
if requirement[submask] <= cnt and dp[i%2][mask^submask]:
dp[(i+1)%2][mask] = 1
submask = (submask-1)&mask
i += 1
return dp[len(cnts)%2][total]