forked from kamyu104/LeetCode-Solutions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfind-unique-binary-string.py
36 lines (31 loc) · 1.21 KB
/
find-unique-binary-string.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
# Time: O(n)
# Space: O(1)
class Solution(object):
def findDifferentBinaryString(self, nums):
"""
:type nums: List[str]
:rtype: str
"""
return "".join("01"[nums[i][i] == '0'] for i in xrange(len(nums)))
# Time: O(k * n) = O(n^2), k is len(nums)
# , n is len(nums[0])
# Space: O(k) = O(n)
class Solution2(object):
def findDifferentBinaryString(self, nums):
"""
:type nums: List[str]
:rtype: str
"""
lookup = set(map(lambda x: int(x, 2), nums)) # Time: O(k * n) = O(n^2)
return next(bin(i)[2:].zfill(len(nums[0])) for i in xrange(2**len(nums[0])) if i not in lookup) # Time: O(k + n) = O(n)
# Time: O(k * n + n * 2^n) = O(n * 2^n), k is len(nums)
# , n is len(nums[0])
# Space: O(k) = O(1) ~ O(2^n)
class Solution_Extra(object):
def findAllDifferentBinaryStrings(self, nums):
"""
:type nums: List[str]
:rtype: List[str]
"""
lookup = set(map(lambda x: int(x, 2), nums)) # Time: O(k * n) = O(n * 2^n)
return [bin(i)[2:].zfill(len(nums[0])) for i in xrange(2**len(nums[0])) if i not in lookup] # Time: O(2^n + n * (2^n - k))