forked from kamyu104/LeetCode-Solutions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpath-with-minimum-effort.py
218 lines (194 loc) · 7.1 KB
/
path-with-minimum-effort.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
# Time: O(m * n * log(m * n))
# Space: O(m * n)
import heapq
# Dijkstra algorithm solution
class Solution(object):
def minimumEffortPath(self, heights):
"""
:type heights: List[List[int]]
:rtype: int
"""
directions = [(0, 1), (1, 0), (0, -1), (-1, 0)]
dst = (len(heights)-1, len(heights[0])-1)
dist = [[float("inf")]*len(heights[0]) for _ in xrange(len(heights))]
dist[0][0] = 0;
min_heap = [(0, 0, 0)]
lookup = [[False]*len(heights[0]) for _ in xrange(len(heights))]
while min_heap:
d, r, c = heapq.heappop(min_heap)
if lookup[r][c]:
continue
lookup[r][c] = True
if (r, c) == dst:
return d
for dr, dc in directions:
nr, nc = r+dr, c+dc
if not (0 <= nr < len(heights) and 0 <= nc < len(heights[0]) and not lookup[nr][nc]):
continue
nd = max(d, abs(heights[nr][nc]-heights[r][c]))
if nd < dist[nr][nc]:
dist[nr][nc] = nd
heapq.heappush(min_heap, (nd, nr, nc))
return -1
# Time: O(m * n * log(m * n) + m * n * α(m * n)) = O(m * n * log(m * n))
# Space: O(m * n)
import collections
class UnionFind(object): # Time: O(n * α(n)), Space: O(n)
def __init__(self, n):
self.set = range(n)
self.rank = [0]*n
def find_set(self, x):
stk = []
while self.set[x] != x: # path compression
stk.append(x)
x = self.set[x]
while stk:
self.set[stk.pop()] = x
return x
def union_set(self, x, y):
x_root, y_root = map(self.find_set, (x, y))
if x_root == y_root:
return False
if self.rank[x_root] < self.rank[y_root]: # union by rank
self.set[x_root] = y_root
elif self.rank[x_root] > self.rank[y_root]:
self.set[y_root] = x_root
else:
self.set[y_root] = x_root
self.rank[x_root] += 1
return True
# union find solution
class Solution2(object):
def minimumEffortPath(self, heights):
"""
:type heights: List[List[int]]
:rtype: int
"""
def index(n, i, j):
return i*n + j
diffs = []
for i in xrange(len(heights)):
for j in xrange(len(heights[0])):
if i > 0:
diffs.append((abs(heights[i][j]-heights[i-1][j]), index(len(heights[0]), i-1, j), index(len(heights[0]), i, j)))
if j > 0:
diffs.append((abs(heights[i][j]-heights[i][j-1]), index(len(heights[0]), i, j-1), index(len(heights[0]), i, j)))
diffs.sort()
union_find = UnionFind(len(heights)*len(heights[0]))
for d, i, j in diffs:
if union_find.union_set(i, j):
if union_find.find_set(index(len(heights[0]), 0, 0)) == \
union_find.find_set(index(len(heights[0]), len(heights)-1, len(heights[0])-1)):
return d
return 0
# Time: O(m * n * logh)
# Space: O(m * n)
# bi-bfs solution
class Solution3(object):
def minimumEffortPath(self, heights):
"""
:type heights: List[List[int]]
:rtype: int
"""
directions = [(0, 1), (1, 0), (0, -1), (-1, 0)]
def check(heights, x): # bi-bfs
lookup = [[False]*len(heights[0]) for _ in xrange(len(heights))]
left, right = {(0, 0)}, {(len(heights)-1, len(heights[0])-1)}
while left:
for r, c in left:
lookup[r][c] = True
new_left = set()
for r, c in left:
if (r, c) in right:
return True
for dr, dc in directions:
nr, nc = r+dr, c+dc
if not (0 <= nr < len(heights) and
0 <= nc < len(heights[0]) and
abs(heights[nr][nc]-heights[r][c]) <= x and
not lookup[nr][nc]):
continue
new_left.add((nr, nc))
left = new_left
if len(left) > len(right):
left, right = right, left
return False
left, right = 0, 10**6
while left <= right:
mid = left + (right-left)//2
if check(heights, mid):
right = mid-1
else:
left = mid+1
return left
# Time: O(m * n * logh)
# Space: O(m * n)
import collections
# bfs solution
class Solution4(object):
def minimumEffortPath(self, heights):
"""
:type heights: List[List[int]]
:rtype: int
"""
directions = [(0, 1), (1, 0), (0, -1), (-1, 0)]
def check(heights, x):
lookup = [[False]*len(heights[0]) for _ in xrange(len(heights))]
q = collections.deque([(0, 0)])
while q:
r, c = q.popleft()
if (r, c) == (len(heights)-1, len(heights[0])-1):
return True
for dr, dc in directions:
nr, nc = r+dr, c+dc
if not (0 <= nr < len(heights) and
0 <= nc < len(heights[0]) and
abs(heights[nr][nc]-heights[r][c]) <= x and
not lookup[nr][nc]):
continue
lookup[nr][nc] = True
q.append((nr, nc))
return False
left, right = 0, 10**6
while left <= right:
mid = left + (right-left)//2
if check(heights, mid):
right = mid-1
else:
left = mid+1
return left
# Time: O(m * n * logh)
# Space: O(m * n)
# dfs solution
class Solution5(object):
def minimumEffortPath(self, heights):
"""
:type heights: List[List[int]]
:rtype: int
"""
directions = [(0, 1), (1, 0), (0, -1), (-1, 0)]
def check(heights, x):
lookup = [[False]*len(heights[0]) for _ in xrange(len(heights))]
stk = [(0, 0)]
while stk:
r, c = stk.pop()
if (r, c) == (len(heights)-1, len(heights[0])-1):
return True
for dr, dc in directions:
nr, nc = r+dr, c+dc
if not (0 <= nr < len(heights) and
0 <= nc < len(heights[0]) and
abs(heights[nr][nc]-heights[r][c]) <= x and
not lookup[nr][nc]):
continue
lookup[nr][nc] = True
stk.append((nr, nc))
return False
left, right = 0, 10**6
while left <= right:
mid = left + (right-left)//2
if check(heights, mid):
right = mid-1
else:
left = mid+1
return left