forked from Atcold/pytorch-PPUU
-
Notifications
You must be signed in to change notification settings - Fork 0
/
map_i80_ctrl.py
90 lines (68 loc) · 2.58 KB
/
map_i80_ctrl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
from map_i80 import I80, I80Car
from traffic_gym_v2 import PatchedCar
class ControlledI80Car(I80Car):
# Import get_lane_set from PatchedCar
get_lane_set = PatchedCar.get_lane_set
def __init__(self, df, y_offset, look_ahead, screen_w, is_circ_road, font=None, kernel=0, dt=1/10):
super().__init__(df, y_offset, look_ahead, screen_w, font, kernel, dt)
self.is_controlled = False
self.buffer_size = 0
self.lanes = None
self.arrived_to_dst = False # arrived to destination
self.frames = list()
@property
def current_lane(self):
# If following the I-80 trajectories
if not self.is_controlled or len(self._states_image) < self.buffer_size:
return super().current_lane
if self.is_circ_road:
while self._position[0] > self.screen_w:
print(f"{self} is looped!")
self._position[0] -= self.screen_w
x = self._position[0]
if x > self.screen_w:# - 1.75 * self.look_ahead:
self.off_screen = True
self.arrived_to_dst = True
#print(f"{self}.off_screen = {self.off_screen}")
# Fetch the y location
y = self._position[1]
# If way too up
if y < self.lanes[0]['min']:
self.off_screen = True
self.arrived_to_dst = False
return 0
# Maybe within a sensible range?
for lane_idx, lane in enumerate(self.lanes):
if lane['min'] <= y <= lane['max']:
return lane_idx
# Or maybe on the ramp
bottom = self.lanes[-1]['max']
if y <= bottom + 53 - x * 0.035:
return 6
# Actually, way too low
self.off_screen = True
self.arrived_to_dst = False
return 6
@property
def is_autonomous(self):
return self.is_controlled and len(self._states_image) > self.buffer_size
def is_circ_road(self):
return self.is_circ_road
class ControlledI80(I80):
# Environment's car class
EnvCar = ControlledI80Car
def __init__(self, **kwargs):
self.control_reps = None
super().__init__(**kwargs)
def reset(self, mode="straight", **kwargs):
super().reset(**kwargs)
if mode in ["straight", "circular"]:
self.mode = mode
else:
raise ValueError("mode must be straight or circular")
observation = None
while observation is None:
observation, reward, done, info = self.step()
return observation
def is_circular_road(self):
return self.mode == "circular"