We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
作者您好,观察该模型架构,主要是在空间上发挥比较好的特征提取能力。对于单纯的时间序列来说,单个样本的维度为[T, N],而不是类似于多帧图像的[T, C,H,W]。如何使用该架构呢?是不是将前面embedding层删除就可以实现了呢?假设多特征NumFeatures之间存在空间特征。直接增加数据维度,发现无法喂进现有网络里
The text was updated successfully, but these errors were encountered:
您好,我看源网络的每个数据格式为B H W C格式,请问这个帧数体现在哪里呢?
Sorry, something went wrong.
把原有时间样本在添加一维在 C 处作为 1 通道应该就可以了吧,即 B NumFeatures Timestep C
No branches or pull requests
作者您好,观察该模型架构,主要是在空间上发挥比较好的特征提取能力。对于单纯的时间序列来说,单个样本的维度为[T, N],而不是类似于多帧图像的[T, C,H,W]。如何使用该架构呢?是不是将前面embedding层删除就可以实现了呢?假设多特征NumFeatures之间存在空间特征。直接增加数据维度,发现无法喂进现有网络里
The text was updated successfully, but these errors were encountered: