-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathapp.py
93 lines (70 loc) · 2.79 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import numpy as np
from flask import Flask, request, jsonify, render_template
import simpletransformers
import pandas as pd
import requests
from simpletransformers.ner import NERModel
import json
import io
from flask_csv import send_csv
from flask import make_response
app = Flask(__name__)
@app.route('/')
def home():
return render_template('index.html')
@app.route('/predict',methods=['POST',"GET"])
def predict():
'''
For rendering results on HTML GUI
'''
int_features = [x for x in request.form.values()]
print(int_features)
sentence = int_features[0]
model1 = NERModel('bert', 'NERMODEL1',
labels=["B-sector","I-sector","B-funda","O","operator","threshold","Join","B-attr","I-funda","TPQty","TPUnit","Sortby", "B-eco","I-eco","B-index","Capitalization","I-","funda","B-security",'I-security','Number','Sector','TPMonth','TPYr','TPRef'],
args={"save_eval_checkpoints": False,
"save_steps": -1,
"output_dir": "NERMODEL",
'overwrite_output_dir': True,
"save_model_every_epoch": False,
'reprocess_input_data': True,
"train_batch_size": 10,'num_train_epochs': 15,"max_seq_length": 64}, use_cuda=False)
predictions, raw_outputs = model1.predict([sentence])
if int_features[1] == 'display':
result = json.dumps(predictions[0])
return render_template('index.html', prediction_text=result)
elif int_features[1] == 'getcsv':
l=[]
print(predictions[0])
print(predictions[0][0])
print(type(predictions[0][0]))
for i in predictions[0]:
dic={}
for j in i.keys():
dic['word']=j
dic['tag']=i[j]
l.append(dic)
print(l)
return send_csv(l,"tags.csv",["word","tag"])
@app.route('/predict_api',methods=['POST'])
def predict_api():
'''
For direct API calls trought request
'''
data = request.get_json(force=True)
sentence=data['sentence']
model1 = NERModel('bert', 'NERMODEL1',
labels=["B-sector","I-sector","B-funda","O","operator","threshold","Join","B-attr","I-funda","TPQty","TPUnit","Sortby", "B-eco","I-eco","B-index","Capitalization","I-","funda","B-security",'I-security','Number','Sector','TPMonth','TPYr','TPRef'],
args={"save_eval_checkpoints": False,
"save_steps": -1,
"output_dir": "NERMODEL",
'overwrite_output_dir': True,
"save_model_every_epoch": False,
'reprocess_input_data': True,
"train_batch_size": 10,'num_train_epochs': 15,"max_seq_length": 64}, use_cuda=False)
predictions, raw_outputs = model1.predict([sentence])
output = predictions
print(jsonify(output))
return jsonify(output)
if __name__ == "__main__":
app.run(debug=True)