-
Notifications
You must be signed in to change notification settings - Fork 117
/
deploy_cpu.sh
executable file
·110 lines (84 loc) · 3.08 KB
/
deploy_cpu.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
#! /bin/bash
IMAGE='insightface-rest'
TAG='v0.9.0.0-cpu'
# Change InsightFace-REST logging level (DEBUG,INFO,WARNING,ERROR)
log_level=INFO
# When starting multiple containers this will be port assigned to first container
START_PORT=18081
# Set how many app instances you want to run per GPU, ensure you have enough GPU
# memory for desired number. Try running with n_workers=1 to estimate memory consumption
# per instance.
# Take note: larger number won't speed up single image inference time, it'll increase
# concurrent throughput.
n_workers=1
# Maximum image size (W,H). If your input images has fixed image size set this
# value proportional or equal to it. Otherwise select value based on your
# performance/accuracy needs.
# If input images may have both album/portrait orientation it's recommended to
# set square dimensions, like 640x640 for better accuracy.
# ATTENTION: For TensorRT backend this size currently can't be set during
# runtime.
max_size=640,640
# DET MODELS:
## retinaface_mnet025_v1, retinaface_mnet025_v2, retinaface_r50_v1, centerface
## scrfd_500m_bnkps, scrfd_2.5g_bnkps, scrfd_10g_bnkps
## scrfd_500m_gnkps, scrfd_2.5g_gnkps, scrfd_10g_gnkps
## yolov5l-face, yolov5m-face, yolov5s-face, yolov5n-face, yolov5n-0.5
## Note: SCRFD family models requires input image shape dividable by 32, i.e 640x640, 1024x768.
det_model=scrfd_2.5g_gnkps
## Maximum batch size for detection model
det_batch_size=1
# REC MODELS:
## None, arcface_r100_v1, glintr100, w600k_r50, w600k_mbf
rec_model=w600k_r50
## Maximum batch size for recognition model (this value also applies for GA and mask detection models)
rec_batch_size=1
# Mask detection models
## None, mask_detector, mask_detector112
mask_detector=None
# GENDER/AGE MODELS:
## None, genderage_v1
ga_model=None
# Default settings for inference requests, can be overridden inside
# request body.
## Return base64 encoded face crops.
return_face_data=False
## Get faces embeddings. Otherwise only bounding boxes will be returned.
extract_embeddings=True
## Estimate gender/age
detect_ga=False
##Face detection probability threshold
det_thresh=0.6
# DEPLOY CONTAINERS
# Create directory to store downloaded models
mkdir -p models
docker build -t $IMAGE:$TAG -f src/Dockerfile_cpu src/.
echo "Starting $n_workers workers on CPU";
name=$IMAGE-cpu;
docker rm -f $name;
echo --- Starting container $name with CPU at port $START_PORT;
docker run -p $START_PORT:18080\
-d\
-e LOG_LEVEL=$log_level\
-e PYTHONUNBUFFERED=0\
-e PORT=18080\
-e NUM_WORKERS=$n_workers\
-e INFERENCE_BACKEND=onnx\
-e DET_NAME=$det_model\
-e DET_THRESH=$det_thresh\
-e REC_NAME=$rec_model\
-e MASK_DETECTOR=$mask_detector\
-e GA_NAME=$ga_model\
-e KEEP_ALL=True\
-e MAX_SIZE=$max_size\
-e DEF_RETURN_FACE_DATA=$return_face_data\
-e DEF_EXTRACT_EMBEDDING=$extract_embeddings\
-e DEF_EXTRACT_GA=$detect_ga\
-v $PWD/models:/models\
-v $PWD/src:/app\
--health-cmd='curl -f http://localhost:18080/info || exit 1'\
--health-interval=1m\
--health-timeout=10s\
--health-retries=3\
--name=$name\
$IMAGE:$TAG