forked from rjkyng/agao23_script
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlecture_Fenchel-Newton.tex
586 lines (524 loc) · 28.2 KB
/
lecture_Fenchel-Newton.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
\chapter{Fenchel Conjugates and Newton's Method}
% \documentclass[draft,11pt]{article}
%\documentclass[11pt]{article}
%\input{../defs}
%\input{../layout-defs}
%\usepackage{amsmath}
%\usepackage{amssymb}
%\usepackage{amsthm}
%\usepackage{graphicx}
%\usepackage{float}
%\usepackage[ruled,vlined]{algorithm2e}
%\SetKwBlock{Repeat}{repeat}{}
%%% for this lecture
%\newcommand\numberthis{\addtocounter{equation}{1}\tag{\theequation}}
%\newcommand\st{~\mathrm{s.t.}~}
%\newcommand\ttau{\boldsymbol{\tau}}
%\newcommand{\df}{\mathrm{d}}
%\def\hcalE{\hat{\mathcal{E}}}
%%%% ADD MACROS HERE
% feel free to add more macros here
%\begin{document}
\sloppy
%\lecture{13 --- Wednesday, May 20th}{Spring 2020}{Rasmus Kyng, Scribe:
% Hongjie Chen}{
%Karush-Kuhn-Tucker Conditions, Fenchel Conjugates, Newton's Method
%}
\section{Lagrange Multipliers and Convex Duality Recap}
Recall the convex optimization program we studied last chapter,
\begin{align*}
\min\quad & \calE(\yy) \\
\text{s.t.}\quad & \AA\yy = \bb \numberthis \label{eq:primal} \\
& \cc(\yy) \leq \veczero,
\end{align*}
where $\calE(\yy): S \rightarrow \R$ is defined on a subset $S \subseteq \R^n$, $\AA \in \R^{m\times n}$
and $\cc(\yy)$ is a vector of constraints $\cc(\yy) = \left(c_i(\yy)\right)_{i \in [k]}$.
For every $i \in [k]$ the function $c_i: S \rightarrow \R$ is convex. We call (\ref{eq:primal}) the primal (program) and denote its optimal value by $\alpha^*$.
The associated Lagrangian is defined by
\[
L(\yy, \xx, \ss) = \calE(\yy) + \xx^T(\bb-\AA\yy) + \ss^T\cc(\yy).
\]
where $\xx \in \R^m$, $\ss \in \R^k$ are dual variables. The dual (program) is given by
\begin{equation}
\label{eq:dual}
\max_{\substack{\xx, \ss \\ \ss \geq 0}} \quad L(\xx, \ss)
\end{equation}
whose optimal value is denoted by $\beta^*$. The dual is always a convex optimization program even though the primal is non-convex.
The optimal value of the primal (\ref{eq:primal}) can also be written as
\begin{equation}\label{eq:alpah}
\alpha^* = \inf_{\yy} \sup_{\xx; \ss\geq\veczero} L(\yy, \xx, \ss),
\end{equation}
where no constraint is imposed on the primal variable $\yy$.
The optimal value of the dual (\ref{eq:dual}) is
\begin{equation}\label{eq:beta}
\beta^* = \sup_{\xx; \ss\geq\veczero} \inf_{\yy} L(\yy, \xx, \ss).
\end{equation}
Note the only difference between (\ref{eq:alpah}) and (\ref{eq:beta}) is that the positions of ``inf" and ``sup" are swapped.
The weak duality theorem states that the dual optimal value is a lower bound of the primal optimal value, i.e.\ $\beta^* \leq \alpha^*$.
The Slater's condition for (\ref{eq:primal}) open domain $S$ requires the existence of a \emph{strictly feasible} point, i.e.\ there exists $\yytil\in S$ s.t.\ $\AA\yytil = \bb$ and $\cc(\yytil) < \veczero$.
This means that the strictly feasible point $\yytil$ lies inside the
interior of the set $\{\yy : \cc(\yy) \leq \veczero\}$ defined by the
inequality constraints.
If the domain $S$ is not open, Slater's condition also requires that a
strictly feasible point is in the relative interior of $S$ (NB:
when $S$ is open, $S$ is equal to its relative interior).
The strong duality theorem says that Slater's condition implies strong
duality, $\beta^* = \alpha^*$.
We were also introduced to the KKT conditions, and we saw that for our
convex programs with continuously differentiable objective and
constraints functions, when the domain is open, the conditions are sufficient to
imply strong duality and primal-dual optimality of the points that
satisfy them.
Finally, we saw that when strong duality holds, KKT must hold at the
primal-dual optimal solutions.
\textbf{In summary:} \emph{Slater's condition $\implies$ strong duality}
and \emph{strong duality $\iff$ KKT}.
\begin{example}
In Chapter~\ref{cha:maxflow2}, we gave a combinatorial proof of the min-cut max-flow
theorem, and showed that the min-cut program can be expressed as a
linear program. Now, we will use the strong duality theorem to give
an alternative proof, and directly find the min-cut linear program
is the dual program to our maximum flow linear program.
We will assume that Slater's condition holds for our primal
program.
Since scaling the flow down enough will always ensure that
capacity constraints are strictly satisfied i.e.\ $\ff < \cc$, the
only concern is to make sure that non-negativity constraints are satisfied.
This means that there is an $s$-$t$ flow that sends a non-zero flow
on every edge.
In fact, this may not always be possible, but it is
easy to detect such edges and remove them without changing the value
of the program: an edge $(u,v)$ should be removed if there is no
path $s$ to $u$ or no path $v$ to $t$. We can identify all such
edges using a BFS from $s$ along
the directed edges and a BFS along reversed directed edges from $t$.
Slater's condition holds whenever there is a directed path from $s$ to $t$
with non-zero capacity (and if there is not, the maximum flow and
minimum cut are both zero).
\begin{align*}
\min_{\begin{subarray}{c} F\in\R \\ \BB\ff=F\bb_{s,t} \\ \veczero\leq\ff\leq\cc \end{subarray}} -F
&= \min_{F;\ff\geq\veczero} \max_{\xx;\ss\geq\veczero} -F + \xx^\trp(F\bb_{s,t}-\BB\ff) + (\ff-\cc)^\trp\ss \\
& \text{(Slater's condition $\implies$ strong duality)} \\
-\max_{\begin{subarray}{c} F\in\R \\ \BB\ff=F\bb_{s,t} \\ \veczero\leq\ff\leq\cc \end{subarray}} F
&= \max_{\xx;\ss\geq\veczero} \min_{F;\ff\geq\veczero} F(\bb_{s,t}^\trp\xx-1) + \ff^\trp(\ss-\BB^\trp\xx) -\cc^\trp\ss \\
&= \max_{\begin{array}{c} \xx;\ss\geq\veczero \\ \bb_{s,t}^\trp\xx=1 \\ \ss\geq\BB^\trp\xx
\end{array}} -\cc^\trp\ss
\end{align*}
Thus switching signs gives us
\begin{align*}
\max_{\begin{subarray}{c} F\in\R \\ \BB\ff=F\bb_{s,t} \\ \veczero\leq\ff\leq\cc \end{subarray}} F
&= \min_{\begin{array}{c} \xx;\ss\geq\veczero \\ \bb_{s,t}^\trp\xx=1 \\ \ss\geq\BB^\trp\xx
\end{array}} \cc^\trp\ss \numberthis \label{eq:min-cut-max-flow}
\end{align*}
The LHS of (\ref{eq:min-cut-max-flow}) is exactly the LP formulation
of max-flow, while the RHS is exactly the LP formulation of min-cut.
Note that we treated the ``constraint'' $ \veczero\leq\ff$ as a
restriction on the domain of $\ff$ rather than a constraint with a
dual variable associated with it.
We always have this kind of flexibility when deciding how to compute
a dual, and some choices may lead to a simpler dual program than others.
\end{example}
\section{Fenchel Conjugates}
In this section we will learn about Fenchel conjugates. This is a
notion of dual function that is closely related to duality of convex
programs, and we will learn more about how dual programs behave by
studying these functions.
\begin{definition}[Fenchel conjugate]
Given a (convex) function $\calE:S\subseteq\R^n\to\R$, its \emph{Fenchel conjugate} is a function $\calE^*:\R^n\to\R$ defined as
\[ \calE^*(\zz) = \sup_{\yy\in S} \langle \zz,\yy \rangle - \calE(\yy). \]
\end{definition}
\begin{remark}
$\calE^*$ is a convex function whether $\calE$ is convex or not, since $\calE^*(z)$ is pointwise supremum of a family of convex (here, affine) functions of $z$.
\end{remark}
In this course, we have only considered convex functions that are
real-valued and continuous and defined on a convex domain. For any such $\calE$, we have $\calE^{**} = \calE$,
i.e.\ the Fenchel conjugate of the Fenchel conjugate is the original
function.
This is a consequence of the Fenchel-Moreau
theorem, which establishes this under slightly more general conditions.
We will not prove this generally, but as part of
Theorem~\ref{thm:conjugate} below, we sketch a proof under more restrictive assumptions.
\begin{example}
Let $\calE(\yy) = \frac{1}{p}\|\yy\|_p^p ~(p>1)$. We want to evaluate its Fenchel conjugate $\calE^*$ at any given point $\zz\in\R^n$. Since $\calE$ is convex and differentiable, the supremum must be achieved at some $\yy$ with vanishing gradient
\[ \grad_{\yy}\langle \zz,\yy^* \rangle - \grad\calE(\yy^*) = \zz - \grad\calE(\yy^*) = \matzero \iff \zz = \grad\calE(\yy^*). \]
It's not difficult to see, for all $i$,
\[ \zz(i) = \sgn{\yy(i)}|\yy(i)|^{p-1}. \]
Then,
\begin{align*}
\calE^*(\zz)
&= \langle \zz,\yy \rangle - \calE(\yy) \\
&= \sum_{i}|\zz(i)|^{\frac{1}{p-1}+1} - \frac{1}{p}|\zz(i)|^{\frac{p}{p-1}} \\
& (\text{define } q \st \frac{1}{q}+\frac{1}{p} = 1) \\
&= \frac{1}{q} \|\zz\|_q^q.
\end{align*}
\end{example}
More generally, given a convex and differentiable function $\calE:S\to\R$, if there exists $\yy\in S$ s.t.\ $\zz = \grad\calE(\yy)$, then $\calE^*(\zz) = (\yy^*)^\trp\grad\calE(\yy^*)-\calE(\yy^*)$.
The Fenchel conjugate and Lagrange duality are closely related, which
is demonstrated in the following example.
\begin{example}
Consider a convex optimization program with only linear constraints,
\begin{align*}
\min_{\yy\in\R^n}\quad & \calE(\yy) \\
\st\quad & \AA\yy = \bb
\end{align*}
where $\calE:\R^n\to\R$ is a convex function and $\AA\in\R^{m\times n}$.
Then the corresponding dual program is
\begin{align*}
\sup_{\xx\in\R^n}\inf_{\yy\in\R^n} \calE(\yy) + \xx^\trp(\bb-\AA\yy)
&= \sup_{\xx\in\R^n}\bb^\trp\xx - \sup_{\yy\in\R^n} \left(\xx^\trp\AA\yy - \calE(\yy)\right) \\
&= \sup_{\xx\in\R^n}\bb^\trp\xx - \calE^*(\AA^\trp\xx) \\
\end{align*}
\end{example}
\begin{theorem}[Properties of the Fenchel conjugate]
\label{thm:conjugate}
Consider a strictly convex function ${\calE : S \to \R}$ where $S \subseteq
R^n$ is an open convex set. When $\calE$ is differentiable with a Hessian
that is positive definite everywhere and its gradient $\grad \calE$
is surjective onto
$\R^n$, we have the following three properties:
\begin{enumerate}
\item $\grad\calE(\grad\calE^*(\zz))=\zz$ \text{and} $\grad\calE^*(\grad\calE(\yy)) = \yy$ \label{enu:gradmap}
\item $(\calE^*)^* = \calE$, i.e.\ the Fenchel conjugate of the \label{enu:doubleconj}
Fenchel conjugate is the original function.
\item $\HH_{\calE^*}(\grad\calE(\yy)) = \HH_{\calE}^{-1}(\yy)$ \label{enu:hessianmap}
\end{enumerate}
\end{theorem}
\begin{figure}[H]
\begin{mdframed}
\centering
% \includegraphics[width=0.5\linewidth]{fig/Fenchel_conjugate.png}
\begin{center}
\begin{tabular}{ c c c }
primal point $\yy$
& $ \begin{matrix}
\xrightarrow{\grad_{\yy} \calE }{} \\
\xleftarrow{\grad_{\zz} \calE^* }{}
\end{matrix}$ &
dual point $\zz$ \\
\\
gradient $\grad_{\yy} \calE(\yy) = \zz$ & & gradient $\grad_{\zz}
\calE^*(\zz) = \yy$ \\
\\
Hessian $\HH_{\calE}(\yy) = \HH_{\calE^*}^{-1}(\zz) $ & & Hessian $\HH_{\calE^*}(\yy) = \HH_{\calE}^{-1}(\yy)$
\end{tabular}
\end{center}
\caption{Properties of Fenchel conjugate}
\label{fig:fenchel}
\end{mdframed}
\end{figure}
\begin{proof}[Proof sketch]
\emph{Part \ref{enu:gradmap}.}
Because the gradient $\grad_{\yy}\calE$ is surjective onto $\R^n$,
given any $\zz \in \R^n$, there exists a $\yy$ such that $\grad
\calE(\yy) = \zz$. Let $\yy(\zz)$ be a $\yy$ s.t. $\grad
\calE(\yy) = \zz$.
It can be shown that because $\calE$ is strictly convex, $\yy(\zz)$
is unique.
The function $\yy \mapsto \ip{\zz, \yy} - \calE(\yy) $ is concave in
$\yy$ and has gradient $\zz - \grad \calE(\yy)$ and is hence
maximized at $\yy = \yy(\zz)$. This follows because we know a
differentiable convex function is minimized when its gradient is zero and so a differentiable concave function is
maximized when its gradient is zero.
Then, using the product rule and composition rule of derivatives,
\begin{align*}
\grad\calE^*(\zz) &= \grad_{\zz} \left(\langle\zz,\yy(\zz)\rangle - \calE(\yy(\zz))\right) \\
&= \yy(\zz) + \left( \grad_{\zz}(\yy(\zz)^{\trp})\right)\zz - \left( \grad_{\zz}(\yy(\zz)^{\trp})\right)
\underbrace{\grad_{\yy}\calE(\yy(\zz))}_{=\zz}\\
&= \yy(\zz)
\end{align*}
Thus we have $\grad_{\yy}\calE(\yy(\zz)) = \zz$ and
$\grad_{\zz}\calE^*(\zz)=\yy(\zz)$.
Combining the two, we have $\grad\calE(\grad\calE^*(\zz))=\zz$.
We can also see that for any $\yy$, there exists a $\zz$ such that
$\grad_{\zz}\calE^*(\zz)=\yy$, namely, this is attained by $\zz =
\grad_{\yy}\calE(\yy)$.
% This $\zz$ is unique, because if $\yy(\zz) = \yy(\zz')$, then
% $\zz' = \grad_{\yy}\calE(\yy(\zz)) = \zz$.
Thus, $\grad\calE^*(\grad\calE(\yy))=\yy$.
% \todo{old}
% there exists an a $\zz$ such that
% $\grad_{\yy}\calE(\yy)$,
% So, we can also conclude that
% At the same time, we also that the $\yy$ such that
% $\grad_{\yy}\calE(\yy(\zz)) = \zz$ is distinct .
% To see this, note that if $\yy(\zz) = \yy(\zz')$, then
% $\zz' = \grad_{\yy}\calE(\yy(\zz)) = \zz$
% At the same time, we also that the $\yy$ such that
% $\grad_{\yy}\calE(\yy(\zz)) = \zz$ is unique.
% To see this, note that if $\yy(\zz) = \yy(\zz')$, then
% $\zz' = \grad_{\yy}\calE(\yy(\zz)) = \zz$
% But, note that if $\grad_{\yy}\calE(\yy(\zz)) = \zz'$
% note that we cannot have two distinct $\zz ,\zz'$ (i.e.\ $\zz \neq \zz'$)
% such that $\yy(zz)$
% we can also write $\grad\calE^*(\grad\calE(\yy))=\yy$.
% Combining the two, we have $\grad\calE(\grad\calE^*(\zz))=\zz$.
% Plugging $\zz = \grad\calE(\yy(\zz))$, one has
% $\grad\calE^*(\grad\calE(\yy))=\yy$.
% But, for a given $\yy$, associate a $\zz(\yy) =
% \grad\calE(\yy)$, and then we have
% $\zz = \grad\calE(\yy)$
% Note also, that for a given $\yy$, we can associate a $\zz(\yy) =
% \grad\calE(\yy)$.
% At this
% Furthermore, one can show that $ \grad\calE : \R^n \to \R^n$ is a
% bijection (we omit the proof).
% Hence for a given $\yy$ there always exist unique $\zz$ such that
% $\zz = \grad\calE(\yy)$
% Thus, we can write for this pair $\yy,\zz$ that
% $\grad_{\yy}\calE(\yy) = \zz$ and $\grad_{\zz}\calE^*(\zz)=\yy$,
% and we have that $\grad\calE^*(\grad\calE(\yy))=\yy$.
\emph{Part \ref{enu:doubleconj}.}
Observe that
\[ \calE^{**}(\uu) = \sup_{\zz \in \R^n} \ip{\uu,\zz} - \calE^*(\zz) \]
and let $\zz(\uu)$ denote the $\zz$ obtaining the supremum, in the
above program.
We then have ${\uu =\grad\calE^*(\zz(\uu))}$. Letting $\yy(\zz)$ be
defined as in Part~\ref{enu:gradmap},
we get $\yy(\zz(\uu)) = \grad_{\zz}\calE^*(\zz(\uu)) = \uu$
\[
\calE^{**}(\uu) = \ip{\uu,\zz(\uu)} - \left(
\ip{\zz(\uu),\yy(\zz(\uu))}-\calE(\yy(\zz(\uu))) \right)
= \calE(\uu)
.
\]
\emph{Part \ref{enu:hessianmap}.}
Now we add two infinitesimals $\ttau$ and $\ddelta$ to $\zz$ and $\yy$ respectively s.t.
\[ \grad_{\zz}\calE^*(\zz+\ttau)=\yy+\ddelta, \quad \grad_{\yy}\calE(\yy+\ddelta) = \zz+\ttau. \]
Then,
\[ \grad_{\yy}\calE(\yy+\ddelta) - \grad_{\yy}\calE(\yy) = \ttau, \quad
\grad_{\zz}\calE^*(\zz+\ttau) - \grad_{\zz}\calE^*(\zz) = \ddelta. \]
Since $\HH_{\calE}(\yy)$ measures the change of $\grad_{\yy}\calE(\yy)$ when $\yy$ changes by an infinitesimal $\ddelta$, then
\begin{align*}
& \grad_{\yy}\calE(\yy+\ddelta) - \grad_{\yy}\calE(\yy) \approx \HH_{\calE}(\yy)\ddelta \\
\iff & \HH_{\calE}^{-1}(\yy)\left( \grad_{\yy}\calE(\yy+\ddelta) - \grad_{\yy}\calE(\yy) \right) \approx \ddelta \\
\iff & \HH_{\calE}^{-1}(\yy)\ttau \approx \ddelta = \grad\calE^*(\zz+\ttau) - \grad\calE^*(\zz) \\
\iff & \HH_{\calE}^{-1}(\yy)\ttau \approx \grad\calE^*(\zz+\ttau) - \grad\calE^*(\zz) \numberthis \label{eq:whatever1}
\end{align*}
Similarly,
\begin{equation}\label{eq:whatever2}
\HH_{\calE^*}(\zz)\ttau \approx
\grad_{\zz}\calE^*(\zz+\ttau) - \grad_{\zz}\calE^*(\zz)
\end{equation}
Comparing (\ref{eq:whatever1}) and (\ref{eq:whatever2}), it is easy to see
\[ \HH_{\calE^*}(\zz) = \HH_{\calE}^{-1}(\yy) \iff \HH_{\calE^*}(\grad\calE(\yy)) = \HH_{\calE}^{-1}(\yy). \]
\end{proof}
\begin{remark}
Theorem~\ref{thm:conjugate} can be generalized to show that the
Fenchel conjugate has similar nice properties under much more
general conditions,
e.g. see \cite{BV04}.
\end{remark}
\section{Newton's Method}
\subsection{Warm-up: Quadratic Optimization}
First, let us play with a toy example, minimizing a quadratic function
\[ \calE(\yy) = \frac{1}{2}\yy^\trp\AA\yy + \bb^\trp\yy + \cc \]
where $\AA\in\R^{n \times n}$ is positive definite. By setting the gradient w.r.t. $\yy$ to zero,
\[ \grad\calE(\yy) = \AA\yy + \bb = \matzero, \]
we obtain the global minimizer
\[ \yy^* = -\AA^{-1}\bb. \]
To make it more like gradient descent, let us start at some ``guess" point $\yy$ and take a step $\ddelta$ to move to the new point $\yy+\ddelta$. Then we try to minimize $\calE(\yy+\ddelta)$ by setting the gradient w.r.t. $\ddelta$ to zero,
\begin{align*}
\grad_{\ddelta} \calE(\yy+\ddelta) = \AA(\yy+\ddelta)+\bb &= \matzero \\
\ddelta & = -\yy-\AA^{-1}\bb \\
\yy+\ddelta &= -\AA^{-1}\bb
\end{align*}
This gives us exactly global minimizer in just one step.
However, the situation changes when the function is not quadratic anymore and thus we do not have a constant Hessian. But taking a step which tries to set the gradient to zero might still be a good idea.
\subsection{$K$-stable Hessian}
Next, consider a convex function $\calE:\R^n\to\R$ whose Hessian is ``nearly constant". Recall the Hessian $\HH_{\calE}(\yy)$ aka $\grad^2\calE(\yy)$ at a point $\yy$ is just a matrix of pairwise 2nd order partial derivatives $\frac{\partial^2\calE(\yy)}{\partial\yy_i\partial\yy_j}$. We say $\calE$ has a $k$-stable Hessian if there exists a constant matrix $\AA$ s.t.\ for all $\yy$
\[ \HH_{\calE}(\yy) \approx_{K} \AA \iff
\frac{1}{1+K}\AA \preceq \HH_{\calE}(\yy) \preceq (1+K)\AA. \]
Note that we just require the existence of $\AA$ and do not assume we know $\AA$.
Then a natural question is to ask what convergence rate can be achieved if we take a gradient step ``guided" by the Hessian, which is called a ``Newton step". Such method is also known as the 2nd order method. Note that this is very similar to preconditioning.
Now, let us make our setting precise. We want to minimize a convex function $\calE$ with $k$-stable Hessian $\AA\succ\matzero$. And $\yy^*$ is a global minimizer of $\calE$. Start from some initial point $\yy_0$. The update rule is
\[ \yy_{i+1} = \yy_{i} - \alpha \cdot \HH_{\calE}^{-1}(\yy_{i}) \grad \calE(\yy_i), \]
where $\alpha$ is the step size and it will be decided later.
\begin{theorem}
$\calE(\yy_k)-\calE(\yy^*) \leq \epsilon \left(\calE(\yy_0)-\calE(\yy^*)\right)$ when $k>(K+1)^6\log(1/\epsilon)$.
\end{theorem}
\begin{proof}
By Taylor's theorem, there exists $\yytil\in[\yy,\yy+\ddelta]$ s.t.\
\begin{align*}
\calE(\yy+\ddelta) &= \calE(\yy) + \grad\calE(\yy)^\trp\ddelta + \frac{1}{2}\ddelta^\trp \HH_{\calE}(\yytil)\ddelta \\
&\leq \underbrace{\calE(\yy) + \grad\calE(\yy)^\trp\ddelta + \frac{(K+1)^2}{2}\ddelta^\trp \HH_{\calE}(\yy)\ddelta}_{=:f(\ddelta)} \numberthis \label{eq:whatever3}
\end{align*}
where the inequality comes from the $K$-stability of the Hessian,
\[ \HH_{\calE}(\yytil) \preceq (1+K)\AA \preceq (1+K)^2\HH_{\calE}(\yy). \]
Observe that $f(\ddelta)$ is a convex quadratic function in
$\ddelta$. By minimizing it, or equivalently setting $\grad_{\ddelta}f(\ddelta^*) = \matzero$, we get
\begin{equation}
\label{eq:whatever4}
\ddelta^* = -\frac{1}{(K+1)^2}\HH_{\calE}^{-1}(\yy)\grad_{\yy}\calE(\yy)
\end{equation}
Here, the step size $\alpha$ is equal to $(K+1)^{-2}$.
Then, plugging (\ref{eq:whatever4}) into (\ref{eq:whatever3}),
\begin{align*}
\calE(\yy+\ddelta^*)
&\leq \calE(\yy) - \frac{1}{2(K+1)^2}\grad_{\yy}\calE(\yy)^\trp \HH_{\calE}^{-1}(\yy) \grad_{\yy}\calE(\yy) \\
&\leq \calE(\yy) - \frac{1}{2(K+1)^3}\grad_{\yy}\calE(\yy)^\trp \AA^{-1} \grad_{\yy}\calE(\yy) \\
& (\text{subtract } \calE(\yy^*) \text{ on both sides}) \\
\calE(\yy+\ddelta^*)-\calE(\yy^*) &\leq \calE(\yy)-\calE(\yy^*) -
\frac{1}{2(K+1)^3}\underbrace{\grad_{\yy}\calE(\yy)^\trp
\AA^{-1}
\grad_{\yy}\calE(\yy)}_{=:\sigma}
\numberthis \label{eq:idk1}
\end{align*}
where the second inequality is due to $K$-stability of the inverse Hessian,
\[ \frac{1}{1+K}\AA^{-1} \preceq \HH_{\calE}(\yy)^{-1} \preceq (1+K)\AA^{-1}. \]
Meanwhile, by convexity, we also have
\begin{align*}
\calE(\yy)- \calE(\yy^*)
\leq
\underbrace{ (\yy-\yy^*)^\trp\grad\calE(\yy) }_{=:\gamma}
\end{align*}
% using Taylor's theorem and $K$-stability, for some
% $\hat{\yy}$ between $\yy$ and $\yy^*$,
% and noting $\grad\calE(\yy^*) = \veczero$, we have
% \begin{align*}
% \calE(\yy) &= \calE(\yy^*) + \grad\calE(\yy^*)^\trp(\yy-\yy^*) + \frac{1}{2}(\yy-\yy^*)^\trp \HH_{\calE}(\hat{\yy})(\yy-\yy^*) \\
% \calE(\yy)-\calE(\yy^*) &\leq \frac{(K+1)}{2}\underbrace{(\yy-\yy^*)^\trp\AA(\yy-\yy^*)}_{=:\gamma}
% \end{align*}
Next, our task is reduced to comparing $\sigma$ and $\gamma$.
% $\yy_t := \yy^* + t(\yy-\yy^*)$ ($t\in[0,1]$) is a point on the segment connecting $\yy^*$ and $\yy$. Since
% \[ \grad\calE(\yy) = \grad\calE(\yy) - \grad\calE(\yy^*) = \int_{0}^{1} H(\yy_t)(\yy-\yy^*)\df t, \]
% then
% \begin{align*}
% (\yy-\yy^*)^\trp\grad\calE(\yy)
% &= \int_{0}^{1} (\yy-\yy^*)^\trp H(\yy_t)(\yy-\yy^*)\df t \\
% &\geq \frac{1}{K+1}\int_{0}^{1} (\yy-\yy^*)^\trp\AA(\yy-\yy^*)\df t \\
% &= \frac{\gamma}{K+1} \numberthis \label{eq:idk1}
% \end{align*}
% On the other hand,
We define $\zz_s = \grad\calE(\yy^*) + s(\grad\calE(\yy)-\grad\calE(\yy^*))$ and then $\df\zz_s = \grad\calE(\yy)\df s$.
Using \emph{Theorem \ref{thm:conjugate}}, we have
\[ \yy-\yy^* = \int_{0}^{1} \HH_{\calE^*}(\zz_s) \grad\calE(\yy) \df s.\]
Then,
\begin{align*}
\grad\calE(\yy)^\trp(\yy-\yy^*)
&= \int_{0}^{1} \grad\calE(\yy)^\trp \HH_{\calE^*}(\zz_s) \grad\calE(\yy) \df s \\
&\leq (K+1)\int_{0}^{1} \grad\calE(\yy)^\trp \AA^{-1} \grad\calE(\yy) \df s \\
&\leq (K+1)\sigma \numberthis \label{eq:idk2}
\end{align*}
Combining (\ref{eq:idk1}) and (\ref{eq:idk2}) yields
% \[ \gamma \leq (K+1)^2\sigma. \]
% Therefore,
\[ \calE(\yy+\ddelta^*)-\calE(\yy^*) \leq (\calE(\yy)-\calE(\yy^*))\left(1-\frac{1}{2(K+1)^4}\right). \]
\end{proof}
\begin{remark}
The basic idea of relating $\sigma$ and $\gamma$ in the above proof is writing the same quantity, $\grad\calE(\yy)^\trp(\yy-\yy^*)$, as two integrations along different lines.
$(K+1)^4$ can be reduced to $(K+1)^2$ and even to $(K+1)$ with more care.
In some settings, Newton's method converges in $\log\log(1/\epsilon)$ steps.
\end{remark}
\subsection{Linearly Constrained Newton's Method}
Let us apply Newton's method to convex optimization programs with only linear constraints,
\begin{align*}
\min_{\ff\in\R^m}\quad & \calE(\ff) \\
\st\quad & \BB\ff = \dd
\end{align*}
where $\calE:\R^m\to\R$ is a convex function and $\BB\in\R^{n\times m}$. Wlog, let $\dd=\matzero$, since otherwise we can equivalently deal the following program with $\BB\ff_0 = \dd$,
\begin{align*}
\min_{\rrho\in\R^m}\quad & \calE(\ff_0+\rrho) \\
\st\quad & \BB\rrho = \matzero
\end{align*}
It is useful to think of the variable $\ff\in\R^m$ as a flow in a graph.
Define $C := \{\ff:\BB\ff=\matzero\}$ which is the kernel space of $\BB$. $C$ is also called the ``cycle space" as it is the set of cycle flows when treating $\ff$ as flows.
\paragraph{Analyzing the convergence of Newton's method with linear
constraints.}
It is not immediately obvious, but our analysis of Newton step's and
their convergence on objectives with a $K$-stable Hessian carries over
directly to linearly constrained convex optimization
problems.
We will only sketch a proof of this.
Firstly, we should notice that instead of thinking of our objective function
$\calE$ as defined on $\R^m$ and then constrained to inputs $\ff \in
C$, we can think of a new function $\hcalE: C \to \R$ defined such
that for $\ff \in C$ we have $\hcalE(\ff) = \calE(\ff)$.
But, $C$ is a linear subspace and is isomorphic\footnote{You don't
need to know the formal definition of isomorphism on vector
spaces. In this context, it means equivalent up to a
transformation by an invertible matrix. In fact in our case, the isomorphism
is given by an orthonormal matrix.} to $\R^{\dim{C}}$.
This means that our previous analysis can be directly applied, if we
can compute the gradient and Hessian of the function viewed as an
\emph{unconstrained} function on $C$ (or equivalently
$\R^{\dim{C}}$).
We now have two important questions to answer:
\begin{tight_enumerate}
\item What does the gradient and Hessian, and hence Newton steps, of
$\hcalE(\ff)$ look like?
\item Does the $K$-stability of the Hessian of $\calE$ carry over to
the function $\hcalE$?
\end{tight_enumerate}
The gradient and Hessian of $\hcalE$ should live in $\R^{\dim C}$ and
$\R^{\dim C \times \dim C}$ respectively.
Let $\Pi_C$ be the orthogonal projection matrix onto $\CC$, meaning $\Pi_C$ is symmetric and $\Pi_C\ddelta=\ddelta$ for any $\ddelta\in C$.
Given any $\ff \in C$, add to it an infinitesimal $\ddelta\in C$, then
\begin{align*}
\hcalE(\ff+\ddelta)=
\calE(\ff+\ddelta) &\approx \calE(\ff) + \langle\grad\calE(\ff),\ddelta\rangle \\
&= \calE(\ff) + \langle\grad\calE(\ff),\Pi_C\ddelta\rangle \\
&= \calE(\ff) + \langle\Pi_C\grad\calE(\ff),\ddelta\rangle
\end{align*}
From this, we can deduce that the gradient of $\hcalE$ at a point
$\ff\in C$ is essentially equal (up to a fixed linear transformation
independent of $\ff$) to the projection of gradient of $\grad\calE$ at $\ff$ onto the subspace $C$.
Similarly,
\begin{align*}
\hcalE(\ff+\ddelta) = \calE(\ff+\ddelta) & \approx \calE(\ff) + \langle\Pi_C\grad\calE(\ff),\ddelta\rangle + \frac{1}{2}\langle\ddelta,\Pi_C\HH_{\calE}(\ff)\Pi_C\ddelta\rangle
\end{align*}
Again from this, we can deduce that the Hessian of $\hcalE$ at a point
$\ff\in C$ is essentially equal (again up to a fixed linear transformation
independent of $\ff$) to the
matrix $\Pi_C\HH_{\calE}(\ff)\Pi_C$.
Note that $\XX \preceq \YY$ implies $\Pi_C \XX \Pi_C \preceq \Pi_C
\YY \Pi_C$, and from this we can see that the Hessian of $\hcalE$ is
$K$-stable if the Hessian of $\calE$ is.
Also note that we were not terribly formal in the discussion above.
We can be more precise by replacing $\Pi_C$ with a linear map from $\R^{\dim
C}$ to $\R^{m}$ which maps any vector in $\R^{\dim
C}$ to a vector in $C$ and then going through a similar chain of reasoning.
What is a Newton step $\ddelta^*$ w.r.t. $\hcalE$? It turns out that
for actually computing the Newton step, it is easier to think again of
$\calE$ with a constraint that the Newton step must lie in the
subspace $C$.
One can show that this is equivalent to the Newton step of $\hcalE$,
but we omit this.
In the constrained view, $\ddelta^*$ should be a minimizer of
\begin{align*}
& \min_{\begin{subarray}{c} \ddelta\in\R^m \\ \BB\ddelta=\matzero \end{subarray}} \langle \underbrace{\grad\calE(\ff)}_{=:\gg},\ddelta\rangle + \frac{1}{2}\langle\ddelta,\underbrace{\HH_{\calE}(\ff)}_{=:\HH} \ddelta\rangle \\
& \text{(Lagrange duality)} \\
\iff & \max_{\xx\in\R^n} \min_{\ddelta\in\R^m} \underbrace{\langle\gg,\ddelta\rangle + \frac{1}{2}\langle\ddelta,\HH\ddelta\rangle - \xx^\trp\BB\ddelta}_{\text{Lagrangian } L(\ddelta,\xx)} \numberthis \label{eq:finally}
\end{align*}
Applying the KKT optimality conditions, one has
\begin{align*}
\BB\ddelta = \matzero, \\
\grad_{\ddelta} L(\ddelta,\xx) = \gg+ \HH\ddelta - \BB^\trp\xx = \matzero,
\end{align*}
from which we get
\begin{align*}
\ddelta + \HH^{-1}\gg &= \HH^{-1}\BB^\trp\xx \\
\underbrace{\BB\ddelta}_{=\matzero} + \BB\HH^{-1}\gg &= \BB\HH^{-1}\BB^\trp\xx \\
\BB\HH^{-1}\gg &= \underbrace{\BB\HH^{-1}\BB^\trp}_{=:\LL}\xx
\end{align*}
Finally, the solutions to (\ref{eq:finally}) are
\[\begin{cases}
\xx^* &= \LL^{-1}\BB\HH^{-1}\gg \\
\ddelta^* &= -\HH^{-1}\gg + \HH^{-1}\BB^\trp\xx^*
\end{cases}\]
It is easy to verify that $\BB\ddelta^* = \matzero$. Thus, our update rule is $\ff_{i+1} = \ff_{i} + \ddelta^*$. And we have the following convergence result.
\begin{theorem}
$\hcalE(\ff_k)-\hcalE(\ff^*) \leq \epsilon \cdot \big(\hcalE(\ff_0)-\hcalE(\ff^*)\big)$ when $k>2(K+1)^4\log(1/\epsilon)$.
\end{theorem}
\begin{remark}
Note if $\calE(\ff) = \sum_{i=1}^{m} \calE_{i}(\ff(i))$, then
$\HH_{\calE}(\ff)$ is diagonal. Thus, $\LL=\BB\HH^{-1}\BB^\trp$ is
indeed a Laplacian provided that $\BB$ is an incidence matrix.
Therefore, the linear equations we need to solve to apply
Newton's method in a network flow setting are Laplacians, which
means we can solve them very quickly.
\end{remark}
%\end{document}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "main"
%%% End: