From cc4827ca629570678cf6271f6f3ef76dd7ea3bd3 Mon Sep 17 00:00:00 2001 From: Surya Dantuluri Date: Thu, 15 Jun 2017 23:47:15 -0700 Subject: [PATCH] fixed bugs for tf1.0 Fixed bugs for users running TF1.0 on macosx. There were some depreciated functions that were renamed or taken out with the TF1.0 update. --- model.py | 2 +- train.py | 10 ++++++---- 2 files changed, 7 insertions(+), 5 deletions(-) diff --git a/model.py b/model.py index 0bc4576..84984a8 100644 --- a/model.py +++ b/model.py @@ -85,4 +85,4 @@ def conv2d(x, W, stride): W_fc5 = weight_variable([10, 1]) b_fc5 = bias_variable([1]) -y = tf.mul(tf.atan(tf.matmul(h_fc4_drop, W_fc5) + b_fc5), 2) #scale the atan output +y = tf.multiply(tf.atan(tf.matmul(h_fc4_drop, W_fc5) + b_fc5), 2) #scale the atan output diff --git a/train.py b/train.py index b1fad04..6c2a9b0 100644 --- a/train.py +++ b/train.py @@ -12,20 +12,22 @@ train_vars = tf.trainable_variables() -loss = tf.reduce_mean(tf.square(tf.sub(model.y_, model.y))) + tf.add_n([tf.nn.l2_loss(v) for v in train_vars]) * L2NormConst +loss = tf.reduce_mean(tf.square(tf.subtract(model.y_, model.y))) + tf.add_n([tf.nn.l2_loss(v) for v in train_vars]) * L2NormConst train_step = tf.train.AdamOptimizer(1e-4).minimize(loss) sess.run(tf.initialize_all_variables()) # create a summary to monitor cost tensor -tf.scalar_summary("loss", loss) +tf.summary.scalar("loss", loss) # merge all summaries into a single op -merged_summary_op = tf.merge_all_summaries() +merged_summary_op = tf.summary.merge_all() + saver = tf.train.Saver(write_version = saver_pb2.SaverDef.V1) # op to write logs to Tensorboard logs_path = './logs' -summary_writer = tf.train.SummaryWriter(logs_path, graph=tf.get_default_graph()) +summary_writer = tf.summary.FileWriter(logs_path, graph=tf.get_default_graph()) + epochs = 30 batch_size = 100