-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathProPnjBKZ_for_lwe.py
executable file
·467 lines (364 loc) · 16.4 KB
/
ProPnjBKZ_for_lwe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
#!/usr/bin/env python
# -*- coding: utf-8 -*-
####
#
# Copyright (C) 2018-2021 Team G6K
#
# This file is part of G6K. G6K is free software:
# you can redistribute it and/or modify it under the terms of the
# GNU General Public License as published by the Free Software Foundation,
# either version 2 of the License, or (at your option) any later version.
#
# G6K is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with G6K. If not, see <http://www.gnu.org/licenses/>.
#
####
"""
LWE Challenge Solving Command Line Client
"""
from __future__ import absolute_import
from __future__ import print_function
import copy
import re
import sys
import time
from collections import OrderedDict # noqa
from math import log,sqrt, log2, floor
from fpylll import BKZ as fplll_bkz
from fpylll.algorithms.bkz2 import BKZReduction
from fpylll.tools.quality import basis_quality
# from g6k.algorithms.bkz import pump_n_jump_bkz_tour
from g6k.algorithms.bkz_ds import pump_n_jump_bkz_tour
from g6k.algorithms.pump import pump
# from g6k.algorithms.pump_cpu import pump
from g6k.siever import Siever
from g6k.utils.cli import parse_args, run_all, pop_prefixed_params
from g6k.utils.stats import SieveTreeTracer, dummy_tracer
from g6k.utils.util import load_lwe_instance, load_lwe_challenge
# from g6k.utils.lwe_estimation import gsa_params, primal_lattice_basis
from g6k.utils.lwe_estimation import gsa_params, primal_lattice_basis
from pump_estimation import pump_estimation
from strategy_gen.strategy_gen import EnumBS, BSSA
from numpy import float64
from fpylll.util import gaussian_heuristic
def theo_dim4free2_in_B(rr):
gh = gaussian_heuristic(rr)
d = len(rr)
for f in range(d-1,-1,-1):
ghf = gaussian_heuristic(rr[f:])
if(ghf * 4/3. >= ((d-f)/d) * gh):
return f
return 0
def accs_2023_d4f(slope):
f = floor(log(sqrt(4/3.))/(-1*slope/4.))
return f
def lwe_kernel(arg0, params=None, seed=None):
"""
Run the primal attack against Darmstadt LWE instance (n, alpha).
:param n: the dimension of the LWE-challenge secret
:param params: parameters for LWE:
- lwe/alpha: the noise rate of the LWE-challenge
- lwe/m: the number of samples to use for the primal attack
- lwe/goal_margin: accept anything that is
goal_margin * estimate(length of embedded vector)
as an lwe solution
- lwe/svp_bkz_time_factor: if > 0, run a larger pump when
svp_bkz_time_factor * time(BKZ tours so far) is expected
to be enough time to find a solution
- bkz/blocksizes: given as low:high:inc perform BKZ reduction
with blocksizes in range(low, high, inc) (after some light)
prereduction
- bkz/tours: the number of tours to do for each blocksize
- bkz/jump: the number of blocks to jump in a BKZ tour after
each pump
- bkz/extra_dim4free: lift to indices extra_dim4free earlier in
the lattice than the currently sieved block
- bkz/fpylll_crossover: use enumeration based BKZ from fpylll
below this blocksize
- bkz/dim4free_fun: in blocksize x, try f(x) dimensions for free,
give as 'lambda x: f(x)', e.g. 'lambda x: 11.5 + 0.075*x'
- pump/down_sieve: sieve after each insert in the pump-down
phase of the pump
- dummy_tracer: use a dummy tracer which captures less information
- verbose: print information throughout the lwe challenge attempt
"""
# Pool.map only supports a single parameter
if params is None and seed is None:
n, params, seed = arg0
else:
n = arg0
params = copy.copy(params)
# params for underlying BKZ
extra_dim4free = params.pop("bkz/extra_dim4free")
jump = params.pop("bkz/jump")
dim4free_fun = params.pop("bkz/dim4free_fun")
pump_params = pop_prefixed_params("pump", params)
if "dsvp" in pump_params:
beta_pump = pump_params.pop("dsvp")
else:
beta_pump = None
# if "succ_prob" in pump_params:
# succ_prob = pump_params.pop("succ_prob")
# else:
# succ_prob = None
# print(beta_pump)
fpylll_crossover = params.pop("bkz/fpylll_crossover")
tours = params.pop("bkz/tours")
# flow of the lwe solver
svp_bkz_time_factor = params.pop("lwe/svp_bkz_time_factor")
goal_margin = params.pop("lwe/goal_margin")
blocksizes = params.pop("bkz/blocksizes")
# generation of lwe instance and Kannan's embedding
alpha = params.pop("lwe/alpha")
m = params.pop("lwe/m")
decouple = svp_bkz_time_factor > 0
# misc
dont_trace = params.pop("dummy_tracer")
verbose = params.pop("verbose")
strategy_method = params.pop("strategy_method")
load_lwe = params.pop("load_lwe")
float_type = params.pop("float_type")
max_jump = params.pop("max_jump")
if(max_jump is None):
max_jump = 100
set_j1 = params.pop("set_j1")
gen_strategy_only = params.pop("gen_strategy_only")
max_RAM = params.pop("max_RAM")
if(max_RAM is None):
max_RAM = 1000
print("-------------------------")
if(load_lwe == "lwe_instance"):
A, c, q = load_lwe_instance(n=n, alpha=alpha)
print("Primal attack, LWE instance n=%d, alpha=%.4f" % (n, alpha))
if(load_lwe == "lwe_challenge" or load_lwe is None):
A, c, q = load_lwe_challenge(n=n, alpha=alpha)
print("Primal attack, LWE challenge n=%d, alpha=%.4f" % (n, alpha))
if m is None:
try:
min_cost_param = gsa_params(n=A.ncols, alpha=alpha, q=q,
decouple=decouple, samples = A.nrows)
(b, s, m) = min_cost_param
except TypeError:
raise TypeError("No winning parameters.")
else:
try:
min_cost_param = gsa_params(n=A.ncols, alpha=alpha, q=q,
decouple=decouple)
(b, s, _) = min_cost_param
except TypeError:
raise TypeError("No winning parameters.")
print("Chose %d samples. Predict solution at bkz-%d + svp-%d" % (m, b, s))
print()
# no use in having a very small b
b = max(b, s-65)
target_norm = goal_margin * (alpha*q)**2 * m + 1
# target_norm = max( target_norm, 0.98 * full_gh)
# B_=load_lwe_challenge_mid(n=n, alpha=alpha)
# if B_ is not None:
# B = B_
# else:
# B = primal_lattice_basis(A, c, q, m=m)
B = primal_lattice_basis(A, c, q, m=m) #debug
g6k = Siever(B, params, float_type = float_type)
print("GSO precision: ", g6k.M.float_type)
print("||b_1|| = %d, target_norm = %d" %(g6k.M.get_r(0, 0), target_norm))
if dont_trace:
tracer = dummy_tracer
else:
tracer = SieveTreeTracer(g6k, root_label=("lwe"), start_clocks=True)
d = g6k.full_n
g6k.lll(0, g6k.full_n)
g6k.update_gso(0,d)
slope = basis_quality(g6k.M)["/"]
sigma = alpha * q
dvol = g6k.M.get_log_det(0,d)/2. - log(sigma)*d
print("Intial Slope = %.5f, dim = %d, dvol = %3.13f\n" %(slope, d, dvol))
log2_rr = [round((log2(g6k.M.get_r(i,i))/2.) - (log2(sigma)),5) for i in range(d)]
if(strategy_method == "enumbs"):
enumbs = EnumBS(d,g6k.M.float_type,max_jump=max_jump, max_RAM = max_RAM)
T0_enumbs = time.time()
enumbs(log2_rr)
# enumbs(d,dvol)
sys.stdout.flush()
print("Cost for generate strategy through EnumBS: %.2f sec" %(time.time()-T0_enumbs))
blocksizes = enumbs.get_strategy()
target_slope = enumbs.get_target_slope()
if(strategy_method == "bssav1"):
bssa = BSSA(d,"v1",g6k.M.float_type,max_jump=max_jump, max_RAM = max_RAM)
T0_bssa = time.time()
bssa(log2_rr)
sys.stdout.flush()
print("Cost for generate strategy through BSSAv1: %.2f sec" %(time.time()-T0_bssa))
blocksizes =bssa.get_strategy()
if(strategy_method == "bssav2"):
bssa = BSSA(d,"v2",g6k.M.float_type,max_jump=max_jump, max_RAM = max_RAM)
T0_bssa = time.time()
bssa(log2_rr)
sys.stdout.flush()
print("Cost for generate strategy through BSSAv2: %.2f sec" %(time.time()-T0_bssa))
blocksizes =bssa.get_strategy()
if(strategy_method is None or blocksizes is None) :
blocksizes = list(range(10, d)) + list(reversed(range(b-14, 60, -10))) + list(range(b - 12, b + 25, 2)) # noqa
blocksizes = [(_,1,1) for _ in blocksizes[:10]]
# blocksizes = []
if(set_j1 == 1):
blocksizes = [(blocksize, 1, tours) for (blocksize, _, tours) in blocksizes]
print("Blocksize Strategy: ", end= "")
print(blocksizes)
print()
T0 = time.time()
T0_BKZ = time.time()
# print(abs(basis_quality(g6k.M)["/"] - target_slope),basis_quality(g6k.M)["/"],target_slope)
# while( abs(basis_quality(g6k.M)["/"] - target_slope)> 0.001):
if(gen_strategy_only is None or gen_strategy_only != 1):
for S in blocksizes:
(blocksize, jump, tours) = S
for tt in range(tours):
# BKZ tours
if blocksize < fpylll_crossover:
print("Starting a fpylll BKZ-%d tour. " % (blocksize), end=' ')
sys.stdout.flush()
# if verbose:
# print("Starting a fpylll BKZ-%d tour. " % (blocksize), end=' ')
# sys.stdout.flush()
bkz = BKZReduction(g6k.M)
par = fplll_bkz.Param(blocksize,
strategies=fplll_bkz.DEFAULT_STRATEGY,
max_loops=1)
bkz(par)
else:
print("Starting a pnjBKZ-%d-%d tour. " % (blocksize,jump))
sys.stdout.flush()
# if verbose:
# print("Starting a pnjBKZ-%d tour. " % (blocksize))
max_RAM = pump_n_jump_bkz_tour(g6k, tracer, blocksize, jump=jump,
verbose=verbose,
extra_dim4free=extra_dim4free,
dim4free_fun=dim4free_fun,
goal_r0=target_norm,
pump_params=pump_params)
g6k.lll(0, g6k.full_n)
#write the mid result of basis
alpha_ = int(alpha*1000)
filename = 'lwechallenge/%03d-%03d-midmat.txt' % (n, alpha_)
fn = open(filename, "w")
fn.write(str(n)+'\n')
fn.write(str(m)+'\n')
fn.write(str(q)+'\n')
fn.write(str(alpha)+'\n')
fn.write('[')
for i in range(g6k.M.B.nrows):
fn.write('[')
for j in range(g6k.M.B.ncols):
fn.write(str(g6k.M.B[i][j]))
if j<g6k.M.B.ncols-1:
fn.write(' ')
if i < g6k.M.B.nrows-1:
fn.write(']\n')
fn.write(']]')
fn.close()
T_BKZ = time.time() - T0_BKZ
slope = basis_quality(g6k.M)["/"]
fmt = "slope: %.5f,||b_1|| = %d, target_norm = %d, BKZ cost: %.3f s, walltime: %.3f sec"
if(blocksize < fpylll_crossover):
print(fmt % (slope, g6k.M.get_r(0, 0), target_norm, T_BKZ, time.time() - T0))
else:
fmt += ", memory cost = %3.2f GB "
print(fmt % (slope, g6k.M.get_r(0, 0), target_norm, T_BKZ, time.time() - T0, max_RAM))
sys.stdout.flush()
T0_BKZ = time.time()
if g6k.M.get_r(0, 0) <= target_norm: #or g6k.M.B[0][-1] == 1 or g6k.M.B[0][-1] == -1:
print("Finished! TT=%.2f sec" % (time.time() - T0))
print(g6k.M.B[0])
alpha_ = int(alpha*1000)
filename = 'lwechallenge/%03d-%03d-solution.txt' % (n, alpha_)
fn = open(filename, "w")
fn.write(str(g6k.M.B[0]))
fn.close()
return
if not (g6k.M.get_r(0, 0) <= target_norm ):#or g6k.M.B[0][-1] == 1 or g6k.M.B[0][-1] == -1):
if(beta_pump is None):
rr = [g6k.M.get_r(i,i) for i in range(d)]
# if(succ_prob is not None):
# beta_pump = pump_estimation(rr,q, alpha, succ_prob = succ_prob)
# else:
beta_pump = min(d, pump_estimation(rr,q, alpha)[1] + 1)
n_max= 143
llb = d - beta_pump
f = max(accs_2023_d4f(slope), beta_pump - n_max)
T0_pump = time.time()
print("Without otf, would expect solution at pump_{%d, %d, %d},n_max = %d" % (llb, beta_pump , f, n_max)) # noqa
if verbose:
print()
print( "Starting svp pump_{%d, %d, %d}" % (llb, d-llb, f) ) # noqa
sys.stdout.flush()
_, max_RAM_cost = pump(g6k, tracer, llb, d-llb, f, verbose=verbose, goal_r0=target_norm * (d - llb)/(1.*d),**pump_params)
if verbose:
T_pump = time.time() - T0_pump
slope = basis_quality(g6k.M)["/"]
fmt = "slope: %.5f, T_pump = %.3f sec, RAM_pump = %.3f GB, walltime: %.3f sec"
print(fmt % (slope,T_pump, max_RAM_cost, time.time()-T0))
g6k.lll(0, g6k.full_n)
#write the result of basis after last pump
alpha_ = int(alpha*1000)
filename = 'lwechallenge/%03d-%03d-last-pump.txt' % (n, alpha_)
fn = open(filename, "w")
fn.write(str(n)+'\n')
fn.write(str(m)+'\n')
fn.write(str(q)+'\n')
fn.write(str(alpha)+'\n')
fn.write('[')
for i in range(g6k.M.B.nrows):
fn.write('[')
for j in range(g6k.M.B.ncols):
fn.write(str(g6k.M.B[i][j]))
if j<g6k.M.B.ncols-1:
fn.write(' ')
if i < g6k.M.B.nrows-1:
fn.write(']\n')
fn.write(']]')
fn.close()
if g6k.M.get_r(0, 0) <= target_norm: #or g6k.M.B[0][-1] == 1 or g6k.M.B[0][-1] == -1:
print("Finished! TT=%.2f sec" % (time.time() - T0))
print(g6k.M.B[0])
alpha_ = int(alpha*1000)
filename = 'lwechallenge/%03d-%03d-solution.txt' % (n, alpha_)
fn = open(filename, "w")
fn.write(str(g6k.M.B[0]))
fn.close()
return
raise ValueError("No solution found.")
def lwe():
"""
Attempt to solve an lwe challenge.
"""
description = lwe.__doc__
args, all_params = parse_args(description,
lwe__alpha=0.005,
lwe__m=None,
lwe__goal_margin=1.5,
lwe__svp_bkz_time_factor=1,
bkz__blocksizes=None,
bkz__tours=1,
bkz__jump=1,
bkz__extra_dim4free=12,
bkz__fpylll_crossover=51,
bkz__dim4free_fun="default_dim4free_fun",
pump__down_sieve=True,
dummy_tracer=True, # set to control memory
verbose=True
)
stats = run_all(lwe_kernel, list(all_params.values()), # noqa
lower_bound=args.lower_bound,
upper_bound=args.upper_bound,
step_size=args.step_size,
trials=args.trials,
workers=args.workers,
seed=args.seed)
if __name__ == '__main__':
lwe()