-
Notifications
You must be signed in to change notification settings - Fork 16
/
SpamClassifier.py
66 lines (53 loc) · 1.99 KB
/
SpamClassifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# -*- coding: utf-8 -*-
# coding: utf-8
#Naive Bayes
import os
import io
import numpy
from pandas import DataFrame
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB
#Function to read files (emails) from the local directory
def readFiles(path):
for root, dirnames, filenames in os.walk(path):
for filename in filenames:
path = os.path.join(root, filename)
inBody = False
lines = []
f = io.open(path, 'r', encoding='latin1')
for line in f:
if inBody:
lines.append(line)
elif line == '\n':
inBody = True
f.close()
message = '\n'.join(lines)
yield path, message
def dataFrameFromDirectory(path, classification):
rows = []
index = []
for filename, message in readFiles(path):
rows.append({'message': message, 'class': classification})
index.append(filename)
return DataFrame(rows, index=index)
#An empty dataframe with 'message' and 'class' headers
data = DataFrame({'message': [], 'class': []})
#Including the email details with the spam/ham classification in the dataframe
data = data.append(dataFrameFromDirectory('C:/Users/surya/Desktop/DecemberBreak/emails/spam', 'spam'))
data = data.append(dataFrameFromDirectory('C:/Users/surya/Desktop/DecemberBreak/emails/ham', 'ham'))
#Head and the Tail of 'data'
data.head()
print(data.tail())
vectoriser = CountVectorizer()
count = vectoriser.fit_transform(data['message'].values)
print(count)
target = data['class'].values
print(target)
classifier = MultinomialNB()
classifier.fit(count, target)
print(classifier)
exampleInput = ["Hey. This is John Cena. You can't see me", "Free Viagra boys!!", "Please reply to get this offer"]
excount = vectoriser.transform(exampleInput)
print(excount)
prediction = classifier.predict(excount)
print(prediction)