-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
293 lines (237 loc) · 16.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import torch
import argparse
import sys
from nerf.provider import NeRFDataset
from nerf.utils import *
# torch.autograd.set_detect_anomaly(True)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--text', default=None, help="text prompt")
parser.add_argument('--negative', default='', type=str, help="negative text prompt")
parser.add_argument('-O', action='store_true', help="equals --fp16 --cuda_ray")
parser.add_argument('-O2', action='store_true', help="equals --backbone vanilla")
parser.add_argument('--test', action='store_true', help="test mode")
parser.add_argument('--eval_interval', type=int, default=1, help="evaluate on the valid set every interval epochs")
parser.add_argument('--workspace', type=str, default='workspace')
parser.add_argument('--guidance', type=str, default='deepfloyd-if', help='score model')
parser.add_argument('--seed', default=None)
parser.add_argument('--image', default=None, help="image prompt")
parser.add_argument('--known_view_interval', type=int, default=2, help="train default view with RGB loss every & iters, only valid if --image is not None.")
parser.add_argument('--guidance_scale', type=float, default=100, help="diffusion model classifier-free guidancescale")
parser.add_argument('--save_mesh', action='store_true', help="export an obj mesh with texture")
parser.add_argument('--mcubes_resolution', type=int, default=256, help="mcubes resolution for extracting mesh")
parser.add_argument('--decimate_target', type=int, default=5e4, help="target face number for mesh decimation")
parser.add_argument('--dmtet', action='store_true', help="use dmtet finetuning")
parser.add_argument('--tet_grid_size', type=int, default=128, help="tet grid size")
parser.add_argument('--init_ckpt', type=str, default='', help="ckpt to init dmtet")
### training options
parser.add_argument('--iters', type=int, default=10000, help="training iters")
parser.add_argument('--lr', type=float, default=1e-3, help="max learning rate")
parser.add_argument('--ckpt', type=str, default='latest')
parser.add_argument('--cuda_ray', action='store_true', help="use CUDA raymarching instead of pytorch")
parser.add_argument('--taichi_ray', action='store_true', help="use taichi raymarching")
parser.add_argument('--max_steps', type=int, default=1024, help="max num steps sampled per ray (only valid when using --cuda_ray)")
parser.add_argument('--num_steps', type=int, default=64, help="num steps sampled per ray (only valid when not using --cuda_ray)")
parser.add_argument('--upsample_steps', type=int, default=32, help="num steps up-sampled per ray (only valid when not using --cuda_ray)")
parser.add_argument('--update_extra_interval', type=int, default=16, help="iter interval to update extra status (only valid when using --cuda_ray)")
parser.add_argument('--max_ray_batch', type=int, default=4096, help="batch size of rays at inference to avoid OOM (only valid when not using --cuda_ray)")
parser.add_argument('--warmup_iters', type=int, default=2000, help="training iters that only use albedo shading")
parser.add_argument('--jitter_pose', action='store_true', help="add jitters to the randomly sampled camera poses")
parser.add_argument('--uniform_sphere_rate', type=float, default=0, help="likelihood of sampling camera location uniformly on the sphere surface area")
parser.add_argument('--grad_clip', type=float, default=-1, help="clip grad of all grad to this limit, negative value disables it")
parser.add_argument('--grad_clip_rgb', type=float, default=-1, help="clip grad of rgb space grad to this limit, negative value disables it")
# model options
parser.add_argument('--bg_radius', type=float, default=1.4, help="if positive, use a background model at sphere(bg_radius)")
parser.add_argument('--density_activation', type=str, default='softplus', choices=['softplus', 'exp'], help="density activation function")
parser.add_argument('--density_thresh', type=float, default=0.1, help="threshold for density grid to be occupied")
parser.add_argument('--blob_density', type=float, default=10, help="max (center) density for the density blob")
parser.add_argument('--blob_radius', type=float, default=0.5, help="control the radius for the density blob")
# network backbone
parser.add_argument('--backbone', type=str, default='grid', choices=['grid_tcnn', 'grid', 'vanilla', 'grid_taichi'], help="nerf backbone")
parser.add_argument('--optim', type=str, default='adan', choices=['adan', 'adam'], help="optimizer")
parser.add_argument('--sd_version', type=str, default='2.1', choices=['1.5', '2.0', '2.1'], help="stable diffusion version")
parser.add_argument('--if_version', type=str, default='1.0', choices=['1.0'], help="IF version")
parser.add_argument('--hf_key', type=str, default=None, help="hugging face Stable diffusion model key")
# try this if CUDA OOM
parser.add_argument('--fp16', action='store_true', help="use float16 for training")
parser.add_argument('--vram_O', action='store_true', help="optimization for low VRAM usage")
# rendering resolution in training, increase these for better quality / decrease these if CUDA OOM even if --vram_O enabled.
parser.add_argument('--w', type=int, default=64, help="render width for NeRF in training")
parser.add_argument('--h', type=int, default=64, help="render height for NeRF in training")
parser.add_argument('--known_view_scale', type=float, default=1.5, help="multiply --h/w by this for known view rendering")
parser.add_argument('--known_view_noise_scale', type=float, default=2e-3, help="random camera noise added to rays_o and rays_d")
parser.add_argument('--dmtet_reso_scale', type=float, default=8, help="multiply --h/w by this for dmtet finetuning")
### dataset options
parser.add_argument('--bound', type=float, default=1, help="assume the scene is bounded in box(-bound, bound)")
parser.add_argument('--dt_gamma', type=float, default=0, help="dt_gamma (>=0) for adaptive ray marching. set to 0 to disable, >0 to accelerate rendering (but usually with worse quality)")
parser.add_argument('--min_near', type=float, default=0.01, help="minimum near distance for camera")
parser.add_argument('--radius_range', type=float, nargs='*', default=[1.0, 1.5], help="training camera radius range")
parser.add_argument('--theta_range', type=float, nargs='*', default=[45, 105], help="training camera fovy range")
parser.add_argument('--phi_range', type=float, nargs='*', default=[-180, 180], help="training camera fovy range")
parser.add_argument('--fovy_range', type=float, nargs='*', default=[40, 80], help="training camera fovy range")
parser.add_argument('--default_radius', type=float, default=1.2, help="radius for the default view")
parser.add_argument('--default_theta', type=float, default=90, help="radius for the default view")
parser.add_argument('--default_phi', type=float, default=0, help="radius for the default view")
parser.add_argument('--default_fovy', type=float, default=60, help="fovy for the default view")
parser.add_argument('--progressive_view', action='store_true', help="progressively expand view sampling range from default to full")
parser.add_argument('--progressive_level', action='store_true', help="progressively increase gridencoder's max_level")
parser.add_argument('--angle_overhead', type=float, default=30, help="[0, angle_overhead] is the overhead region")
parser.add_argument('--angle_front', type=float, default=60, help="[0, angle_front] is the front region, [180, 180+angle_front] the back region, otherwise the side region.")
parser.add_argument('--t_range', type=float, nargs='*', default=[0.02, 0.98], help="stable diffusion time steps range")
### regularizations
parser.add_argument('--lambda_entropy', type=float, default=1e-3, help="loss scale for alpha entropy")
parser.add_argument('--lambda_opacity', type=float, default=0, help="loss scale for alpha value")
parser.add_argument('--lambda_orient', type=float, default=1e-2, help="loss scale for orientation")
parser.add_argument('--lambda_tv', type=float, default=0, help="loss scale for total variation")
parser.add_argument('--lambda_wd', type=float, default=0, help="loss scale")
parser.add_argument('--lambda_mesh_normal', type=float, default=0.5, help="loss scale for mesh normal smoothness")
parser.add_argument('--lambda_mesh_laplacian', type=float, default=0.5, help="loss scale for mesh laplacian")
parser.add_argument('--lambda_guidance', type=float, default=1, help="loss scale for SDS")
parser.add_argument('--lambda_rgb', type=float, default=10, help="loss scale for RGB")
parser.add_argument('--lambda_mask', type=float, default=5, help="loss scale for mask (alpha)")
parser.add_argument('--lambda_normal', type=float, default=0, help="loss scale for normal map")
parser.add_argument('--lambda_depth', type=float, default=0.1, help="loss scale for relative depth")
parser.add_argument('--lambda_2d_normal_smooth', type=float, default=0, help="loss scale for 2D normal image smoothness")
### GUI options
parser.add_argument('--gui', action='store_true', help="start a GUI")
parser.add_argument('--W', type=int, default=800, help="GUI width")
parser.add_argument('--H', type=int, default=800, help="GUI height")
parser.add_argument('--radius', type=float, default=3, help="default GUI camera radius from center")
parser.add_argument('--fovy', type=float, default=60, help="default GUI camera fovy")
parser.add_argument('--light_theta', type=float, default=60, help="default GUI light direction in [0, 180], corresponding to elevation [90, -90]")
parser.add_argument('--light_phi', type=float, default=0, help="default GUI light direction in [0, 360), azimuth")
parser.add_argument('--max_spp', type=int, default=1, help="GUI rendering max sample per pixel")
opt = parser.parse_args()
if opt.O:
opt.fp16 = True
opt.cuda_ray = True
elif opt.O2:
opt.fp16 = True
opt.backbone = 'vanilla'
# parameters for image-conditioned generation
if opt.image is not None:
if opt.text is None:
# use zero123 guidancemodel when only providing image
opt.guidance = 'zero123'
opt.fovy_range = [opt.default_fovy, opt.default_fovy] # fix fov as zero123 doesn't support changing fov
# very important to keep the image's content
opt.guidance_scale = 3
opt.lambda_guidance = 0.02
else:
# use stable-diffusion when providing both text and image
# opt.guidance = 'stable-diffusion'
opt.guidance = 'deepfloyd-if'
opt.t_range = [0.02, 0.50]
opt.lambda_orient = 10
# latent warmup is not needed, we hardcode a 100-iter rgbd loss only warmup.
opt.warmup_iters = 0
# make shape init more stable
opt.progressive_view = True
opt.progressive_level = True
# default parameters for finetuning
if opt.dmtet:
opt.h = int(opt.h * opt.dmtet_reso_scale)
opt.w = int(opt.w * opt.dmtet_reso_scale)
opt.t_range = [0.02, 0.50] # ref: magic3D
# assume finetuning
opt.warmup_iters = 0
opt.progressive_view = False
opt.progressive_level = False
if opt.guidance != 'zero123':
# smaller fovy (zoom in) for better details
opt.fovy_range = [opt.fovy_range[0] - 10, opt.fovy_range[1] - 10]
# record full range for progressive view expansion
if opt.progressive_view:
# disable as they disturb progressive view
opt.jitter_pose = False
opt.uniform_sphere_rate = 0
# back up full range
opt.full_radius_range = opt.radius_range
opt.full_theta_range = opt.theta_range
opt.full_phi_range = opt.phi_range
opt.full_fovy_range = opt.fovy_range
if opt.backbone == 'vanilla':
from nerf.network import NeRFNetwork
elif opt.backbone == 'grid':
from nerf.network_grid import NeRFNetwork
elif opt.backbone == 'grid_tcnn':
from nerf.network_grid_tcnn import NeRFNetwork
elif opt.backbone == 'grid_taichi':
opt.cuda_ray = False
opt.taichi_ray = True
import taichi as ti
from nerf.network_grid_taichi import NeRFNetwork
taichi_half2_opt = True
taichi_init_args = {"arch": ti.cuda, "device_memory_GB": 4.0}
if taichi_half2_opt:
taichi_init_args["half2_vectorization"] = True
ti.init(**taichi_init_args)
else:
raise NotImplementedError(f'--backbone {opt.backbone} is not implemented!')
print(opt)
if opt.seed is not None:
seed_everything(int(opt.seed))
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = NeRFNetwork(opt).to(device)
if opt.dmtet and opt.init_ckpt != '':
# load pretrained weights to init dmtet
state_dict = torch.load(opt.init_ckpt, map_location=device)
model.load_state_dict(state_dict['model'], strict=False)
if opt.cuda_ray:
model.mean_density = state_dict['mean_density']
model.init_tet()
print(model)
if opt.test:
guidance = None # no need to load guidancemodel at test
trainer = Trainer(' '.join(sys.argv), 'df', opt, model, guidance, device=device, workspace=opt.workspace, fp16=opt.fp16, use_checkpoint=opt.ckpt)
if opt.gui:
from nerf.gui import NeRFGUI
gui = NeRFGUI(opt, trainer)
gui.render()
else:
test_loader = NeRFDataset(opt, device=device, type='test', H=opt.H, W=opt.W, size=100).dataloader()
trainer.test(test_loader)
if opt.save_mesh:
trainer.save_mesh()
else:
train_loader = NeRFDataset(opt, device=device, type='train', H=opt.h, W=opt.w, size=100).dataloader()
if opt.optim == 'adan':
from optimizer import Adan
# Adan usually requires a larger LR
optimizer = lambda model: Adan(model.get_params(5 * opt.lr), eps=1e-8, weight_decay=2e-5, max_grad_norm=5.0, foreach=False)
else: # adam
optimizer = lambda model: torch.optim.Adam(model.get_params(opt.lr), betas=(0.9, 0.99), eps=1e-15)
if opt.backbone == 'vanilla':
scheduler = lambda optimizer: optim.lr_scheduler.LambdaLR(optimizer, lambda iter: 0.1 ** min(iter / opt.iters, 1))
else:
scheduler = lambda optimizer: optim.lr_scheduler.LambdaLR(optimizer, lambda iter: 1) # fixed
# scheduler = lambda optimizer: optim.lr_scheduler.LambdaLR(optimizer, lambda iter: 0.1 ** min(iter / opt.iters, 1))
if opt.guidance == 'deepfloyd-if':
from guidance.if_utils import DeepFloyd_IF
guidance= DeepFloyd_IF(device, opt.fp16, opt.vram_O, opt.if_version, opt.hf_key, opt.t_range)
elif opt.guidance == 'stable-diffusion':
from guidance.sd_utils import StableDiffusion
guidance= StableDiffusion(device, opt.fp16, opt.vram_O, opt.sd_version, opt.hf_key, opt.t_range)
elif opt.guidance == 'zero123':
from guidance.zero123_utils import Zero123
guidance= Zero123(device, opt.fp16, opt.vram_O, opt.t_range)
elif opt.guidance == 'clip':
from guidance.clip_utils import CLIP
guidance= CLIP(device)
else:
raise NotImplementedError(f'--guidance {opt.guidance} is not implemented.')
trainer = Trainer(' '.join(sys.argv), 'df', opt, model, guidance, device=device, workspace=opt.workspace, optimizer=optimizer, ema_decay=0.95, fp16=opt.fp16, lr_scheduler=scheduler, use_checkpoint=opt.ckpt, eval_interval=opt.eval_interval, scheduler_update_every_step=True)
trainer.default_view_data = train_loader._data.get_default_view_data()
if opt.gui:
from nerf.gui import NeRFGUI
gui = NeRFGUI(opt, trainer, train_loader)
gui.render()
else:
valid_loader = NeRFDataset(opt, device=device, type='val', H=opt.H, W=opt.W, size=5).dataloader()
max_epoch = np.ceil(opt.iters / len(train_loader)).astype(np.int32)
trainer.train(train_loader, valid_loader, max_epoch)
# also test at the end
test_loader = NeRFDataset(opt, device=device, type='test', H=opt.H, W=opt.W, size=100).dataloader()
trainer.test(test_loader)
if opt.save_mesh:
trainer.save_mesh()