forked from mila-iqia/Conscious-Planning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
DQN_Dyna.py
475 lines (431 loc) · 38.4 KB
/
DQN_Dyna.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
"""
DEFINITIONS OF DYNA AND DYNA* AGENT
"""
import tensorflow as tf, numpy as np
from runtime import obs2tensor, get_cpprb
from utils import to_categorical, from_categorical, embed_pos_hd, mask_change_minigrid, LinearSchedule, clip_gradients
from components import RL_AGENT, EXTRACTOR_FEATURE
from components_CP import OBJECT_EXTRACTOR, ESTIMATOR_VALUE, MODEL_TRANSITION_MINIGRIDOBS
class DQN_Dyna_NETWORK(tf.keras.Model):
def __init__(self, extractor, head_value, **kwargs):
super(DQN_Dyna_NETWORK, self).__init__(**kwargs)
self.extractor, self.head_value = extractor, head_value
@tf.function
def __call__(self, obs, eval=False):
u = self.extractor(obs)
return self.head_value(u, eval=eval)
def get_DQN_Dyna_BASE_agent(env, args, writer=None):
extractor_feature_policy = EXTRACTOR_FEATURE(shape_input=env.observation_space.shape, type_extractor=args.type_extractor, channels_out=args.len_feature, features_learnable=args.extractor_learnable)
embed_pos, dim_additional = embed_pos_hd([extractor_feature_policy.convh, extractor_feature_policy.convw], len_embed_pos=args.len_embed_pos)
embed_pos = tf.Variable(embed_pos, trainable=True, dtype=tf.float32)
extractor_object_policy = OBJECT_EXTRACTOR(extractor_feature_policy, len_feature=args.len_feature, norm=args.layernorm)
head_value_policy = ESTIMATOR_VALUE(len_feature=args.len_feature, embed_pos=embed_pos, num_actions=env.action_space.n, value_min=args.value_min, value_max=args.value_max, norm=args.layernorm, atoms=args.atoms_value, transform=args.transform_value, n_head=args.n_head)
if args.disable_bottleneck: args.size_bottleneck = extractor_object_policy.m
if args.learn_dyna_model:
model_dynamics = MODEL_TRANSITION_MINIGRIDOBS(len_feature=args.len_feature, embed_pos=embed_pos, n_action_space=env.action_space.n, len_action=args.len_ebd_action, n_head=args.n_head, layers_model=args.layers_model, m=extractor_object_policy.m, n=args.size_bottleneck, reward_min=args.reward_min, reward_max=args.reward_max, atoms_reward=args.atoms_reward, norm=args.layernorm, transform_reward=args.transform_reward, QKV_depth=args.QKV_depth, QKV_width=args.QKV_width, FC_depth=args.FC_depth, FC_width=args.FC_width, type_attention=args.type_attention)
else:
model_dynamics = None
return DQN_Dyna_BASE(env, extractor_object_policy, head_value_policy, model_dynamics, step_plan_max=args.step_plan_max, gamma=args.gamma, steps_total=args.steps_max, embed_pos=embed_pos, writer=writer, value_min=args.value_min, value_max=args.value_max, transform_value=args.transform_value, reward_min=args.reward_min, reward_max=args.reward_max, transform_reward=args.transform_reward, disable_debug=args.performance_only)
class DQN_Dyna_BASE(RL_AGENT):
def __init__(self,
env, extractor_object_policy, head_value_policy, model,
step_plan_max=5, gamma=0.99, exploration_fraction=0.02, exploration_final_eps=0.01, epsilon_eval=0.001, steps_total=50000000, freq_record=512, clip_reward=False, embed_pos=None, writer=None, value_min=None, value_max=None, transform_value=False, reward_min=None, reward_max=None, transform_reward=False, disable_debug=False):
super(DQN_Dyna_BASE, self).__init__(env, gamma, writer)
self.embed_pos = embed_pos
self.step_plan_max = step_plan_max
if self.step_plan_max:
self.steps_plan = LinearSchedule(schedule_timesteps=int(self.step_plan_max * 1e6), initial_p=step_plan_max, final_p=step_plan_max)
self.epsilon = LinearSchedule(schedule_timesteps=int(exploration_fraction * steps_total), initial_p=1.0, final_p=exploration_final_eps)
self.epsilon_eval = epsilon_eval
## policy network
self.extractor_policy = extractor_object_policy
self.head_value_policy = head_value_policy
self.network_policy = DQN_Dyna_NETWORK(self.extractor_policy, self.head_value_policy, name='network_policy')
## model
self.model = model
self.clip_reward = bool(clip_reward)
self.freq_record = freq_record if not disable_debug else int(1e7)
self.steps_interact, self.steps_total = 0, steps_total
self.obs2tensor = lambda x: obs2tensor(x, self.extractor_policy.divisor_feature, self.extractor_policy.dtype_converted_obs)
self.step_last_record_ts = 0
self.value_min, self.value_max, self.reward_min, self.reward_max = value_min, value_max, reward_min, reward_max
self.transform_value, self.transform_reward = transform_value, transform_reward
def step(self, obs_curr, action, reward, obs_next, done, update=False):
if not self.initialized: self.initialize(obs_curr, action)
def decide(self, obs, eval=False, env=None, disable_planning=True, suffix_record='', heuristic='', record_ts=False):
epsilon = self.epsilon_eval if eval else self.epsilon.value(self.steps_interact)
if np.random.rand() > epsilon:
return int(self._decide_model_free(self.obs2tensor(obs)))
else: # explore
return self.action_space.sample()
@tf.function
def _decide_model_free(self, obs):
return tf.math.argmax(from_categorical(self.network_policy(obs, eval=True), value_min=self.value_min, value_max=self.value_max, atoms=self.head_value_policy.atoms, transform=False), axis=-1, output_type=tf.int32) # no need to transform back, only needs the argmax
@tf.function
def _process_samples(self, batch_reward, batch_done):
if self.clip_reward:
batch_reward = tf.math.sign(batch_reward)
else:
batch_reward = tf.clip_by_value(batch_reward, clip_value_min=self.reward_min, clip_value_max=self.reward_max)
batch_done = tf.cast(batch_done, tf.bool)
batch_not_done = tf.logical_not(batch_done)
return batch_reward, batch_done, batch_not_done
@tf.function
def _construct_targets_no_dist(self, batch_reward, batch_not_done, batch_obs_next):
batch_features_next = self.extractor_policy(batch_obs_next)
Q_next = from_categorical(self.head_value_policy(batch_features_next, eval=True), value_min=self.value_min, value_max=self.value_max, atoms=self.head_value_policy.atoms, transform=self.transform_value)
V_next = tf.reduce_max(Q_next, axis=-1)
target_update = tf.clip_by_value(batch_reward + self.gamma * tf.cast(batch_not_done, tf.float32) * V_next, clip_value_min=self.value_min, clip_value_max=self.value_max)
return target_update
@tf.function
def _compute_priorities(self, batch_obs_curr, batch_action, batch_reward, batch_obs_next, batch_done):
batch_action, batch_reward, batch_done = tf.squeeze(batch_action), tf.squeeze(batch_reward), tf.squeeze(batch_done)
batch_reward, batch_done, batch_not_done = self._process_samples(batch_reward, batch_done)
target_update = self._construct_targets_no_dist(batch_reward, batch_not_done, batch_obs_next)
batch_features_curr = self.extractor_policy(batch_obs_curr)
Q_logits_curr = self.head_value_policy(batch_features_curr, softmax=False, eval=True)
indices = tf.stack([tf.range(batch_action.shape[0], dtype=tf.int32), batch_action], 1)
V_dist_curr = tf.nn.softmax(tf.gather_nd(Q_logits_curr, indices), axis=-1)
error_TD_L1 = tf.math.abs(target_update - from_categorical(V_dist_curr, value_min=self.value_min, value_max=self.value_max, atoms=self.head_value_policy.atoms, transform=self.transform_value))
return error_TD_L1
def calculate_priorities(self, batch):
batch_obs_curr, batch_action, batch_reward, batch_done, batch_obs_next = batch.values()
batch_reward = tf.constant(batch_reward, dtype=tf.float32)
batch_done = tf.constant(batch_done, dtype=tf.int32)
batch_action = tf.constant(batch_action, dtype=tf.int32)
batch_obs_curr, batch_obs_next = self.obs2tensor(batch_obs_curr), self.obs2tensor(batch_obs_next)
error_TD_L1 = self._compute_priorities(batch_obs_curr, batch_action, batch_reward, batch_obs_next, batch_done)
return error_TD_L1.numpy()
def initialize(self, obs_curr, action):
obs_curr = self.obs2tensor(obs_curr)
action = tf.constant([action])
self.extractor_policy(obs_curr)
self.network_policy(obs_curr)
if self.model is not None: self.model(tf.cast(obs_curr, tf.float32), action)
self.initialized = True
def weights_copyfrom(self, dict_shared):
try:
tf.keras.backend.set_value(self.embed_pos, dict_shared.pop('embed_pos_src'))
self.network_policy.set_weights(dict_shared.pop('network_policy_src'))
if self.model is not None: self.model.set_weights(dict_shared.pop('model_src'))
except:
print('dict_shared is None: skipped parameter sync')
return dict_shared
def get_DQN_Dyna_agent(env, args, replay_buffer=None, replay_buffer_imagined=None, writer=None):
if replay_buffer is None: replay_buffer = get_cpprb(env, args.size_buffer, prioritized=args.prioritized_replay)
if replay_buffer_imagined is None: replay_buffer_imagined = get_cpprb(env, args.size_buffer, prioritized=args.prioritized_replay)
extractor_feature_policy = EXTRACTOR_FEATURE(shape_input=env.observation_space.shape, type_extractor=args.type_extractor, channels_out=args.len_feature, features_learnable=args.extractor_learnable)
embed_pos, dim_additional = embed_pos_hd([extractor_feature_policy.convh, extractor_feature_policy.convw], len_embed_pos=args.len_embed_pos)
embed_pos = tf.Variable(embed_pos, trainable=True, dtype=tf.float32)
extractor_object_policy = OBJECT_EXTRACTOR(extractor_feature_policy, len_feature=args.len_feature, norm=args.layernorm)
head_value_policy = ESTIMATOR_VALUE(len_feature=args.len_feature, embed_pos=embed_pos, num_actions=env.action_space.n, value_min=args.value_min, value_max=args.value_max, norm=args.layernorm, atoms=args.atoms_value, transform=args.transform_value, n_head=args.n_head)
extractor_feature_target = EXTRACTOR_FEATURE(shape_input=env.observation_space.shape, type_extractor=args.type_extractor, channels_out=args.len_feature)
extractor_object_target = OBJECT_EXTRACTOR(extractor_feature_target, len_feature=args.len_feature, norm=args.layernorm)
extractor_object_target.trainable = False
head_value_target = ESTIMATOR_VALUE(len_feature=args.len_feature, embed_pos=embed_pos, num_actions=env.action_space.n, value_min=args.value_min, value_max=args.value_max, norm=args.layernorm, atoms=args.atoms_value, transform=args.transform_value, n_head=args.n_head)
head_value_target.trainable = False
if args.disable_bottleneck: args.size_bottleneck = extractor_object_policy.m
if args.learn_dyna_model:
model_dynamics = MODEL_TRANSITION_MINIGRIDOBS(len_feature=args.len_feature, embed_pos=embed_pos, n_action_space=env.action_space.n, len_action=args.len_ebd_action, n_head=args.n_head, layers_model=args.layers_model, m=extractor_object_policy.m, n=args.size_bottleneck, reward_min=args.reward_min, reward_max=args.reward_max, atoms_reward=args.atoms_reward, norm=args.layernorm, transform_reward=args.transform_reward, QKV_depth=args.QKV_depth, QKV_width=args.QKV_width, FC_depth=args.FC_depth, FC_width=args.FC_width, type_attention=args.type_attention)
else:
model_dynamics = None
return DQN_Dyna(env, extractor_object_policy, extractor_object_target, head_value_policy, head_value_target, model_dynamics, replay_buffer, replay_buffer_imagined, size_bottleneck=args.size_bottleneck, size_batch=args.size_batch, clip_reward=args.clip_reward, steps_total=args.steps_max, prioritized_replay=args.prioritized_replay, ignore_TD=args.ignore_TD, type_optimizer=args.type_optimizer, step_plan_max=args.step_plan_max, gpu_buffer=args.gpu_buffer, gamma=args.gamma, lr=args.lr, freq_train_TD=args.freq_train_TD, freq_train_model=args.freq_train_model, embed_pos=embed_pos, writer=writer, value_min=args.value_min, value_max=args.value_max, transform_value=args.transform_value, reward_min=args.reward_min, reward_max=args.reward_max, transform_reward=args.transform_reward, disable_debug=args.performance_only)
class DQN_Dyna(DQN_Dyna_BASE):
def __init__(self,
env,
extractor_object_policy, extractor_object_target,
head_value_policy, head_value_target,
model,
replay_buffer, replay_buffer_imagined,
size_bottleneck=16,
step_plan_max=5,
gamma=0.99,
exploration_fraction=0.02, exploration_final_eps=0.01, epsilon_eval=0.001, steps_total=50000000,
prioritized_replay=True,
lr=0.0000625, eps=1.5e-4,
freq_targetnet_update=8000, freq_train_TD=4, freq_train_model=4, size_batch=32,
type_optimizer='Adam',
clip_gradient_TD=True, clip_gradient_model=True,
clip_reward=False, ignore_TD=False, gpu_buffer=False, embed_pos=None, writer=None,
value_min=None, value_max=None, transform_value=False, reward_min=None, reward_max=None, transform_reward=False, disable_debug=False):
super(DQN_Dyna, self).__init__(env, extractor_object_policy, head_value_policy, model,
step_plan_max=step_plan_max, gamma=gamma, exploration_fraction=exploration_fraction, exploration_final_eps=exploration_final_eps, epsilon_eval=epsilon_eval, steps_total=steps_total, embed_pos=embed_pos, clip_reward=clip_reward, writer=writer, value_min=value_min, value_max=value_max, transform_value=transform_value, reward_min=reward_min, reward_max=reward_max, transform_reward=transform_reward, disable_debug=disable_debug)
self.replay_buffer, self.replay_buffer_imagined = replay_buffer, replay_buffer_imagined
self.clip_gradient_TD, self.clip_gradient_model = bool(clip_gradient_TD), bool(clip_gradient_model)
self.ignore_TD = bool(ignore_TD)
self.gpu_buffer = bool(gpu_buffer)
## target network
self.extractor_target = extractor_object_target
self.head_value_target = head_value_target
if self.extractor_target is not None and self.head_value_target is not None:
self.network_target = DQN_Dyna_NETWORK(self.extractor_target, self.head_value_target, name='network_target')
self.network_target.trainable = False
if type_optimizer == 'Adam':
if not self.ignore_TD: self.optimizer_TD = tf.keras.optimizers.Adam(learning_rate=lr, epsilon=eps)
if self.model is not None: self.optimizer_model = tf.keras.optimizers.Adam(learning_rate=lr, epsilon=eps)
elif type_optimizer == 'RMSprop':
if not self.ignore_TD: self.optimizer_TD = tf.keras.optimizers.RMSprop(learning_rate=lr, epsilon=eps)
if self.model is not None: self.optimizer_model = tf.keras.optimizers.RMSprop(learning_rate=lr, epsilon=eps)
self.size_batch = size_batch
self.size_wholeset, self.size_bottleneck = self.extractor_policy.m, size_bottleneck
self.prioritized_replay = bool(prioritized_replay)
self.time_learning_starts = 20000 if self.prioritized_replay else 50000
self.freq_train_TD, self.freq_train_model = freq_train_TD, freq_train_model
self.freq_targetnet_update = freq_targetnet_update
self.flag_optimizers_initialized = False
self.step_last_targetnet_update, self.step_last_update_record = self.time_learning_starts - self.freq_targetnet_update, self.time_learning_starts - self.freq_record
self.step_last_update_TD = np.inf if self.ignore_TD else self.time_learning_starts - self.freq_train_TD
self.step_last_update_model = self.time_learning_starts - self.freq_train_model
self.steps_processed = self.step_last_update_TD if self.model is None else min(self.step_last_update_TD, self.step_last_update_model)
def step(self, obs_curr, action, reward, obs_next, done, update=True): # for single process runs
if obs_next is not None: self.replay_buffer.add(obs=obs_curr, act=action, rew=reward, next_obs=obs_next, done=done) # Dyna does not run with single process, so this is depracated
if update: self.step_update()
self.steps_interact += 1
def step_update(self, batch=None, batch_imagined=None):
if not self.initialized and self.replay_buffer.get_stored_size() >= self.size_batch: self.initialize()
if self.steps_interact >= self.time_learning_starts and self.replay_buffer.get_stored_size() >= self.size_batch and self.replay_buffer_imagined.get_stored_size() >= self.size_batch:
flag_train_TD = not self.ignore_TD and (self.steps_interact - self.step_last_update_TD) >= self.freq_train_TD
flag_train_model = self.model is not None and (self.steps_interact - self.step_last_update_model) >= self.freq_train_model
if flag_train_TD or flag_train_model:
self.update(flag_train_TD, flag_train_model, batch=batch, batch_imagined=batch_imagined)
if not self.ignore_TD and (self.steps_interact - self.step_last_targetnet_update) >= self.freq_targetnet_update:
self.sync_parameters()
self.step_last_targetnet_update += self.freq_targetnet_update
self.steps_processed = self.step_last_update_TD if self.model is None else min(self.step_last_update_TD, self.step_last_update_model)
def need_update(self):
if not self.initialized and self.replay_buffer.get_stored_size() >= self.size_batch: return True
if self.steps_interact >= self.time_learning_starts and self.replay_buffer.get_stored_size() >= self.size_batch and self.replay_buffer_imagined.get_stored_size() >= self.size_batch:
flag_train_TD = not self.ignore_TD and (self.steps_interact - self.step_last_update_TD) >= self.freq_train_TD
flag_train_model = self.model is not None and (self.steps_interact - self.step_last_update_model) >= self.freq_train_model
if flag_train_TD or flag_train_model: return True
if not self.ignore_TD and (self.steps_interact - self.step_last_targetnet_update) >= self.freq_targetnet_update:
return True
return False
@tf.function
def _apply_gradients_TD(self, gradients_TD, clip_TD=True):
if gradients_TD is not None:
if clip_TD: gradients_TD = clip_gradients(gradients_TD)
self.optimizer_TD.apply_gradients(zip(gradients_TD, self.parameters_train_TD))
else:
gradients_TD = None
return gradients_TD
@tf.function
def _apply_gradients_model(self, gradients_model, clip_model=True):
if gradients_model is not None:
if clip_model: gradients_model = clip_gradients(gradients_model)
self.optimizer_model.apply_gradients(zip(gradients_model, self.parameters_train_model))
else:
gradients_model = None
return gradients_model
@tf.function
def _update_TD_Dyna(self, batch_obs_curr, batch_obs_curr_imagined, batch_action, batch_action_imagined, batch_reward, batch_reward_imagined, batch_obs_next, batch_obs_next_imagined, batch_not_done, batch_not_done_imagined, weights, weights_imagined, flag_record=False):
batch_obs_curr_combined, batch_action_combined, batch_reward_combined, batch_obs_next_combined, batch_not_done_combined = tf.concat([batch_obs_curr, batch_obs_curr_imagined], axis=0), tf.concat([batch_action, batch_action_imagined], axis=0), tf.concat([batch_reward, batch_reward_imagined], axis=0), tf.concat([batch_obs_next, batch_obs_next_imagined], axis=0), tf.concat([batch_not_done, batch_not_done_imagined], axis=0)
if self.prioritized_replay:
weights_combined = tf.concat([weights, weights_imagined], axis=0)
else:
weights_combined = None
gradients_TD, error_TD_weighted, error_TD_L1_combined, error_TD_L1_weighted, _, _ = self._update_TD(batch_obs_curr_combined, batch_obs_next_combined, batch_action_combined, batch_reward_combined, batch_not_done_combined, weights_combined, flag_record=flag_record)
if self.prioritized_replay:
error_TD_L1, error_TD_L1_imagined = tf.split(error_TD_L1_combined, 2, axis=0)
else:
error_TD_L1, error_TD_L1_imagined = None, None
return gradients_TD, error_TD_weighted, error_TD_L1, error_TD_L1_imagined, error_TD_L1_weighted
def update(self, flag_train_TD=True, flag_train_model=True, batch=None, batch_imagined=None):
flag_record = (self.steps_interact - self.step_last_update_record) >= self.freq_record
batch_features_next_policy, Q_dist_next_policy = None, None
if not self.flag_optimizers_initialized or flag_train_TD:
if batch is None: batch = self.sample_batch()
batch_obs_curr, batch_action, batch_reward, batch_obs_next, _, batch_not_done, weights, batch_idxes = batch
if batch_imagined is None: batch_imagined = self.sample_batch(imagined=True)
batch_obs_curr_imagined, batch_action_imagined, batch_reward_imagined, batch_obs_next_imagined, _, batch_not_done_imagined, weights_imagined, batch_idxes_imagined = batch_imagined
gradients_TD, error_TD_weighted, error_TD_L1, error_TD_L1_imagined, error_TD_L1_weighted = self._update_TD_Dyna(batch_obs_curr, batch_obs_curr_imagined, batch_action, batch_action_imagined, batch_reward, batch_reward_imagined, batch_obs_next, batch_obs_next_imagined, batch_not_done, batch_not_done_imagined, weights, weights_imagined, flag_record=flag_record)
## update prioritized replay, if used
if self.prioritized_replay:
self.replay_buffer.update_priorities(batch_idxes, error_TD_L1.numpy())
self.replay_buffer_imagined.update_priorities(batch_idxes_imagined, error_TD_L1_imagined.numpy())
if flag_record:
self.record_scalar('Error/TD', error_TD_weighted, self.step_last_update_TD)
self.record_scalar('Debug/norm_gradient_TD', tf.linalg.global_norm(gradients_TD), self.step_last_update_TD)
self.record_scalar('Debug/TD_L1', error_TD_L1_weighted, self.step_last_update_TD)
else:
error_TD_weighted, gradients_TD = 0, None
## model gradients!
if not flag_train_model:
if not flag_train_TD:
if flag_record:
self.step_last_update_record += self.freq_record
return
else:
self._apply_gradients_TD(gradients_TD, clip_TD=self.clip_gradient_TD)
self.step_last_update_TD += self.freq_train_TD
else:
if batch is None: batch = self.sample_batch()
batch_obs_curr, batch_action, batch_reward, batch_obs_next, batch_done, batch_not_done, weights, batch_idxes = batch
gradients_model, error_reward_imagined_L1_weighted, tp_term_imagined, fn_term_imagined, acc_term_imagined, error_dynamics_L1_changed_relative, error_dynamics_L1_unchanged_relative, error_model_weighted, error_dynamics_weighted, error_term_imagined_weighted, error_reward_imagined_weighted, cosdist_features, norm_features_L1, error_dynamics_L1_relative = self._update_model(batch_obs_curr, batch_action, batch_obs_next, batch_done, batch_not_done, batch_reward, batch_features_next_policy, Q_dist_next_policy, weights, flag_record=flag_record)
if flag_train_TD:
self._apply_gradients_TD(gradients_TD, clip_TD=self.clip_gradient_TD)
self.step_last_update_TD += self.freq_train_TD
self._apply_gradients_model(gradients_model, clip_model=self.clip_gradient_model)
self.step_last_update_model += self.freq_train_model
if not self.flag_optimizers_initialized: self.flag_optimizers_initialized = True
if flag_record:
# if not self.ignore_TD and gradients_TD_clip is not None: self.record_scalar('Debug/norm_gradient_TD_clipped', tf.linalg.global_norm(gradients_TD_clip), self.step_last_update_TD)
if flag_train_model:
if self.extractor_policy.features_learnable:
self.record_scalar('Debug/norm_features_L1', norm_features_L1, self.step_last_update_model)
self.record_scalar('Debug/cosdist_features', cosdist_features, self.step_last_update_model)
self.record_scalar('Error/dynamics', error_dynamics_weighted, self.step_last_update_model)
self.record_scalar('Error/reward_imagined', error_reward_imagined_weighted, self.step_last_update_model) # reward predicted using the imagined next observation
self.record_scalar('Error/term_imagined', error_term_imagined_weighted, self.step_last_update_model) # term predicted using the imagined next observation
self.record_scalar('Error/overall', error_TD_weighted + error_model_weighted, self.step_last_update_model)
self.record_scalar('Debug/norm_gradient_model', tf.linalg.global_norm(gradients_model), self.step_last_update_model)
# if gradients_model_clip is not None: self.record_scalar('Debug/norm_gradient_model_clipped', tf.linalg.global_norm(gradients_model_clip), self.step_last_update_model)
self.record_scalar('Debug/reward_imagined_L1', error_reward_imagined_L1_weighted, self.step_last_update_model)
self.record_scalar('Debug/error_dynamics_L1_relative', error_dynamics_L1_relative, self.step_last_update_model)
# self.record_scalar('Debug/error_dynamics_L1_elementwise', error_dynamics_L1_elementwise, self.step_last_update_model)
if error_dynamics_L1_changed_relative is not None: self.record_scalar('Debug/error_dynamics_L1_changed_relative', error_dynamics_L1_changed_relative, self.step_last_update_model)
if error_dynamics_L1_unchanged_relative is not None: self.record_scalar('Debug/error_dynamics_L1_unchanged_relative', error_dynamics_L1_unchanged_relative, self.step_last_update_model)
if tp_term_imagined is not None and not bool(tf.math.is_nan(tp_term_imagined)): self.record_scalar('Debug/tp_term_imagined', tp_term_imagined, self.step_last_update_model)
if fn_term_imagined is not None and not bool(tf.math.is_nan(fn_term_imagined)): self.record_scalar('Debug/fn_term_imagined', fn_term_imagined, self.step_last_update_model)
self.record_scalar('Debug/acc_term_imagined', acc_term_imagined, self.step_last_update_model)
if flag_record:
self.step_last_update_record += self.freq_record
@tf.function
def _construct_targets_DDQN(self, batch_reward, batch_not_done, batch_obs_next):
size_batch = tf.size(batch_reward)
batch_features_next_target = self.extractor_target(batch_obs_next)
Q_next_target = from_categorical(self.head_value_target(batch_features_next_target, eval=True), value_min=self.value_min, value_max=self.value_max, atoms=self.head_value_policy.atoms, transform=self.transform_value)
batch_features_next_policy = self.extractor_policy(batch_obs_next)
Q_dist_next_policy = self.head_value_policy(batch_features_next_policy, eval=True)
batch_action_next_policy = tf.math.argmax(from_categorical(Q_dist_next_policy, value_min=self.value_min, value_max=self.value_max, atoms=self.head_value_policy.atoms, transform=False), axis=-1, output_type=tf.int32) # no need to transform back, only needs the argmax
V_next_target = tf.gather_nd(Q_next_target, tf.stack([tf.range(size_batch, dtype=tf.int32), batch_action_next_policy], 1))
target_update = tf.clip_by_value(batch_reward + self.gamma * tf.cast(batch_not_done, tf.float32) * V_next_target, clip_value_min=self.value_min, clip_value_max=self.value_max)
target_dist_update = to_categorical(target_update, value_min=self.value_min, value_max=self.value_max, atoms=self.head_value_policy.atoms, transform=self.transform_value, clip=False)
return target_dist_update, target_update, batch_features_next_policy, Q_dist_next_policy
@tf.function
def _construct_targets_DQN(self, batch_reward, batch_not_done, batch_obs_next):
batch_features_next_target = self.extractor_target(batch_obs_next)
Q_next_target = from_categorical(self.head_value_target(batch_features_next_target, eval=True), value_min=self.value_min, value_max=self.value_max, atoms=self.head_value_policy.atoms, transform=self.transform_value)
V_next_target = tf.reduce_max(Q_next_target, axis=-1)
target_update = tf.clip_by_value(batch_reward + self.gamma * tf.cast(batch_not_done, tf.float32) * V_next_target, clip_value_min=self.value_min, clip_value_max=self.value_max)
target_dist_update = to_categorical(target_update, value_min=self.value_min, value_max=self.value_max, atoms=self.head_value_policy.atoms, transform=self.transform_value, clip=False)
return target_dist_update, target_update
@tf.function
def _update_TD(self, batch_obs_curr, batch_obs_next, batch_action, batch_reward, batch_not_done, weights, flag_record=True):
target_dist_update, target_update, batch_features_next_policy, Q_dist_next_policy = self._construct_targets_DDQN(batch_reward, batch_not_done, batch_obs_next)
indices = tf.stack([tf.range(batch_action.shape[0], dtype=tf.int32), batch_action], 1)
with tf.GradientTape(watch_accessed_variables=False) as tape:
tape.watch(self.parameters_train_TD)
batch_features_curr = self.extractor_policy(batch_obs_curr)
Q_logits_curr = self.head_value_policy(batch_features_curr, softmax=False, eval=True)
V_dist_curr = tf.nn.softmax(tf.gather_nd(Q_logits_curr, indices), axis=-1)
error_TD = tf.keras.losses.KLD(tf.stop_gradient(target_dist_update), V_dist_curr)
error_TD_weighted = self.weight_error(error_TD, weights)
gradients_TD = tape.gradient(error_TD_weighted, self.parameters_train_TD)
if self.prioritized_replay or flag_record:
error_TD_L1 = tf.math.abs(target_update - from_categorical(V_dist_curr, value_min=self.value_min, value_max=self.value_max, atoms=self.head_value_policy.atoms, transform=self.transform_value))
else:
error_TD_L1 = None
if flag_record:
error_TD_L1_weighted = self.weight_error(error_TD_L1, weights)
else:
error_TD_L1_weighted = None
return gradients_TD, error_TD_weighted, error_TD_L1, error_TD_L1_weighted, batch_features_next_policy, Q_dist_next_policy
@tf.function
def _norm_cosdist_features(self, batch_features):
batch_features_normalized, _ = tf.linalg.normalize(tf.reshape(batch_features, (batch_features.shape[0], -1, batch_features.shape[-1])), ord=2, axis=-1)
cosdist_features = tf.reduce_mean(tf.einsum('abx,adx->abd', batch_features_normalized, batch_features_normalized)) * self.size_wholeset / (self.size_wholeset - 1) - 1.0 / self.size_wholeset
norm_features_L1 = tf.reduce_mean(tf.reduce_sum(tf.math.abs(batch_features), -1))
return cosdist_features, norm_features_L1
@tf.function
def _update_model_forward(self, batch_obs_curr, batch_action, batch_done, batch_reward_categorical, batch_obs_next):
obses_imagined, batch_reward_dist_imagined, batch_done_logits_imagined = self.model.forward_train(batch_obs_curr, batch_action)
## calculate termination imagination error
error_term_imagined = tf.keras.losses.sparse_categorical_crossentropy(tf.stop_gradient(batch_done), batch_done_logits_imagined, from_logits=True, axis=-1)
error_term_imagined_weighted = tf.reduce_mean(error_term_imagined)
## calculate reward imagination error
error_reward_imagined = tf.keras.losses.KLD(tf.stop_gradient(batch_reward_categorical), batch_reward_dist_imagined)
error_reward_imagined_weighted = tf.reduce_mean(error_reward_imagined)
## calculate dynamics consistency error
error_dynamics_L1 = tf.math.abs(tf.stop_gradient(tf.cast(batch_obs_next, tf.float32)) - obses_imagined)
error_dynamics_L1 = tf.reshape(error_dynamics_L1, [error_dynamics_L1.shape[0], -1, error_dynamics_L1.shape[-1]])
error_dynamics = error_dynamics_L1 ** 2
error_dynamics_weighted = tf.reduce_mean(error_dynamics)
## add up!
error_model_weighted = error_dynamics_weighted + error_term_imagined_weighted + error_reward_imagined_weighted
return error_model_weighted, error_term_imagined_weighted, error_reward_imagined_weighted, error_dynamics_weighted, batch_reward_dist_imagined, batch_done_logits_imagined, error_dynamics_L1
@tf.function
def _update_model(self, batch_obs_curr, batch_action, batch_obs_next, batch_done, batch_not_done, batch_reward, batch_features_next, Q_dist_next, weights, flag_record=False):
index_term_trans, index_nonterm_trans = tf.squeeze(tf.where(batch_done)), tf.squeeze(tf.where(batch_not_done))
batch_reward_categorical = to_categorical(batch_reward, value_min=self.reward_min, value_max=self.reward_max, atoms=self.model.predictor_reward_term.atoms, transform=self.transform_reward, clip=False)
if batch_features_next is None: batch_features_next = self.extractor_policy(batch_obs_next) # if from the same batch and DDQN, this thing is already computed
if Q_dist_next is None: Q_dist_next = self.head_value_policy(batch_features_next, eval=True) # if from the same batch and DDQN, this thing is already computed
with tf.GradientTape(watch_accessed_variables=False) as tape:
tape.watch(self.parameters_train_model)
error_model_weighted, error_term_imagined_weighted, error_reward_imagined_weighted, error_dynamics_weighted, batch_reward_dist_imagined, batch_done_logits_imagined, error_dynamics_L1 = self._update_model_forward(tf.cast(batch_obs_curr, tf.float32), batch_action, batch_done, batch_reward_categorical, batch_obs_next)
gradients_model = tape.gradient(error_model_weighted, self.parameters_train_model)
if flag_record:
cosdist_features, norm_features_L1 = self._norm_cosdist_features(batch_features_next)
norm_features_L1_elementwise = norm_features_L1 / self.extractor_policy.len_feature
error_dynamics_L1_relative = tf.reduce_mean(error_dynamics_L1) / norm_features_L1_elementwise
if 'minigrid' in self.extractor_policy.type_env:
error_dynamics_L1_objectwise_relative = tf.reduce_mean(error_dynamics_L1[:, :, 0: 3], axis=-1) / norm_features_L1_elementwise
mask_change = mask_change_minigrid(batch_obs_curr, batch_obs_next)
error_dynamics_L1_changed_relative = tf.reduce_mean(tf.boolean_mask(error_dynamics_L1_objectwise_relative, mask_change))
error_dynamics_L1_unchanged_relative = tf.reduce_mean(tf.boolean_mask(error_dynamics_L1_objectwise_relative, tf.math.logical_not(mask_change)))
else:
error_dynamics_L1_objectwise_relative = tf.reduce_mean(error_dynamics_L1, axis=-1) / norm_features_L1_elementwise
error_dynamics_L1_changed_relative, error_dynamics_L1_unchanged_relative = None, None
batch_reward_imagined = from_categorical(batch_reward_dist_imagined, value_min=self.reward_min, value_max=self.reward_max, atoms=self.model.predictor_reward_term.atoms, transform=self.transform_reward)
error_reward_imagined_L1_weighted = tf.reduce_mean(tf.math.abs(batch_reward - batch_reward_imagined))
batch_done_imagined_compact = tf.dtypes.cast(tf.argmax(batch_done_logits_imagined, axis=-1, output_type=tf.int32), tf.bool)
eq_done = tf.dtypes.cast(batch_done == batch_done_imagined_compact, tf.float32)
acc_term_imagined = tf.reduce_mean(eq_done)
tp_term_imagined = tf.reduce_mean(tf.gather(eq_done, index_term_trans, axis=-1))
fn_term_imagined = tf.reduce_mean(tf.gather(eq_done, index_nonterm_trans, axis=-1))
else:
cosdist_features, norm_features_L1 = None, None
error_reward_imagined_L1_weighted = None
acc_term_imagined, tp_term_imagined, fn_term_imagined = None, None, None
error_dynamics_L1_changed_relative, error_dynamics_L1_unchanged_relative, error_dynamics_L1_relative = None, None, None
return gradients_model, error_reward_imagined_L1_weighted, tp_term_imagined, fn_term_imagined, acc_term_imagined, error_dynamics_L1_changed_relative, error_dynamics_L1_unchanged_relative, error_model_weighted, error_dynamics_weighted, error_term_imagined_weighted, error_reward_imagined_weighted, cosdist_features, norm_features_L1, error_dynamics_L1_relative
def sample_batch(self, size_batch=None, imagined=False):
if size_batch is None: size_batch = self.size_batch
if imagined:
batch_samples = self.replay_buffer_imagined.sample(size_batch)
else:
batch_samples = self.replay_buffer.sample(size_batch)
if self.prioritized_replay:
batch_obs_curr, batch_action, batch_reward, batch_done, batch_obs_next, weights, batch_idxes = batch_samples.values()
weights_tf = tf.constant(weights, dtype=tf.float32)
else:
batch_obs_curr, batch_action, batch_reward, batch_done, batch_obs_next = batch_samples.values()
weights_tf, batch_idxes = None, None
batch_reward_tf = tf.constant(batch_reward, dtype=tf.float32)
batch_done_tf = tf.constant(batch_done, dtype=tf.int32)
batch_action_tf = tf.constant(batch_action, dtype=tf.int32)
batch_obs_curr_tf, batch_obs_next_tf = self.obs2tensor(batch_obs_curr), self.obs2tensor(batch_obs_next)
batch_action_tf, batch_reward_tf, batch_done_tf = tf.squeeze(batch_action_tf), tf.squeeze(batch_reward_tf), tf.squeeze(batch_done_tf)
batch_reward_tf, batch_done_tf, batch_not_done_tf = self._process_samples(batch_reward_tf, batch_done_tf)
return (batch_obs_curr_tf, batch_action_tf, batch_reward_tf, batch_obs_next_tf, batch_done_tf, batch_not_done_tf, weights_tf, batch_idxes)
def sync_parameters(self):
self.network_target.set_weights(self.network_policy.get_weights())
@tf.function
def weight_error(self, error, weights):
if self.prioritized_replay:
return tf.tensordot(error, weights, 1)
else:
return tf.reduce_mean(error)
def initialize(self):
batch_obs_curr, batch_action, batch_reward, batch_obs_next, batch_done, batch_not_done, _, _ = self.sample_batch()
self.extractor_policy(batch_obs_curr)
self.extractor_target(batch_obs_curr)
self._construct_targets_DDQN(batch_reward, batch_not_done, batch_obs_next)
self.network_policy(batch_obs_curr)
self.network_target(batch_obs_curr)
self.parameters_train_TD = self.network_policy.trainable_variables
if self.model is not None:
self.model(tf.cast(batch_obs_curr, tf.float32), batch_action)
self.parameters_train_model = self.model.trainable_variables
self.sync_parameters()
self.initialized = True