forked from mila-iqia/Conscious-Planning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
RandDistShift3.py
332 lines (286 loc) · 12.6 KB
/
RandDistShift3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
"""
DEFINITION FILE OF NAVIGATION ENVIRONMENTS (W/ TURN-AND-FORWARD DYNAMICS)
"""
import numpy as np
from gym_minigrid.minigrid import *
from RandDistShift import highlight_img_var
class RandDistShift3(MiniGridEnv):
class Actions(IntEnum):
left_forward = 0
forward = 1
right_forward = 2
back_forward = 3
def __init__(self, width=8, height=8, lava_density_range=[0.3, 0.4], min_num_route=1, transposed=False, gamma=0.99, max_jump_distance=2, random_color=False):
lava_density = np.random.uniform(lava_density_range[0], lava_density_range[1])
self.min_num_route = min_num_route
self.transposed = transposed
if self.transposed:
self.total_possible_lava = (width * height - 2 * height)
else:
self.total_possible_lava = (width * height - 2 * width)
self.max_lava_blocks = int(self.total_possible_lava * lava_density)
self.agent_start_dir = np.random.randint(0, 4)
if self.transposed:
if np.random.rand() <= 0.5:
self.agent_start_pos = (np.random.randint(1, width), 0)
self.goal_pos = (np.random.randint(0, width - 1), height - 1)
else:
self.agent_start_pos = (np.random.randint(0, width), height - 1)
self.goal_pos = (np.random.randint(0, width), 0)
else:
if np.random.rand() <= 0.5:
self.agent_start_pos = (0, np.random.randint(0, height))
self.goal_pos = (width - 1, np.random.randint(0, height))
else:
self.agent_start_pos = (width - 1, np.random.randint(0, height))
self.goal_pos = (0, np.random.randint(0, height))
self.max_jump_distance = max_jump_distance
self.rand_width = width
self.rand_height = height
self.generate_map()
self.random_color = bool(random_color)
super().__init__(width=width, height=height, max_steps=4 * width * height, see_through_walls=True, agent_view_size=15) # Set this to True for maximum speed
self.actions = RandDistShift3.Actions
self.num_actions = len(self.actions)
self.action_space = spaces.Discrete(self.num_actions)
self.Q_optimal = None
self.solvable = False
self.gamma = gamma
self.observation_space = spaces.Box(
low=0,
high=255,
shape=(self.width, self.height, 3), # number of cells
dtype='uint8'
)
self.obs_curr = self.gen_fullyobservable_obs()
def attention_render(self, highlight=True, tile_size=TILE_PIXELS, highlight_mask=None, C_first=True):
"""
Render the whole-grid human view
"""
# Mask of which cells to highlight
if highlight_mask is None:
highlight_mask = np.zeros(shape=(self.width, self.height), dtype=np.bool)
else:
highlight_mask = highlight_mask.reshape(self.height, self.width)
# Render the whole grid
img = self.att_render(
tile_size,
self.agent_pos,
self.agent_dir,
highlight_mask=highlight_mask if highlight else None
)
if C_first: img = np.transpose(img, (2, 0, 1))
return img
def att_render(
self,
tile_size,
agent_pos=None,
agent_dir=None,
highlight_mask=None
):
"""
Render this grid at a given scale
:param r: target renderer object
:param tile_size: tile size in pixels
"""
if highlight_mask is None:
highlight_mask = np.zeros(shape=(self.width, self.height), dtype=np.bool)
# Compute the total grid size
width_px = self.width * tile_size
height_px = self.height * tile_size
img = np.zeros(shape=(height_px, width_px, 3), dtype=np.uint8)
# Render the grid
for j in range(0, self.height):
for i in range(0, self.width):
cell = self.grid.get(i, j)
agent_here = np.array_equal(agent_pos, (i, j))
tile_img = self.att_render_tile(
cell,
agent_dir=agent_dir if agent_here else None,
highlight=highlight_mask[i, j],
tile_size=tile_size
)
ymin = j * tile_size
ymax = (j+1) * tile_size
xmin = i * tile_size
xmax = (i+1) * tile_size
img[ymin:ymax, xmin:xmax, :] = tile_img
return img
def att_render_tile(
self,
obj,
agent_dir=None,
highlight=False,
tile_size=TILE_PIXELS,
subdivs=3
):
"""
Render a tile and cache the result
"""
# Hash map lookup key for the cache
key = (agent_dir, highlight, tile_size)
key = obj.encode() + key if obj else key
if key in self.grid.tile_cache:
return self.grid.tile_cache[key]
img = np.zeros(shape=(tile_size * subdivs, tile_size * subdivs, 3), dtype=np.uint8)
# Draw the grid lines (top and left edges)
fill_coords(img, point_in_rect(0, 0.031, 0, 1), (100, 100, 100))
fill_coords(img, point_in_rect(0, 1, 0, 0.031), (100, 100, 100))
if obj != None:
obj.render(img)
# Overlay the agent on top
if agent_dir is not None:
tri_fn = point_in_triangle(
(0.12, 0.19),
(0.87, 0.50),
(0.12, 0.81),
)
# Rotate the agent based on its direction
tri_fn = rotate_fn(tri_fn, cx=0.5, cy=0.5, theta=0.5*math.pi*agent_dir)
fill_coords(img, tri_fn, (255, 0, 0))
# Highlight the cell if needed
if highlight:
highlight_img_var(img)
# Downsample the image to perform supersampling/anti-aliasing
img = downsample(img, subdivs)
# Cache the rendered tile
self.grid.tile_cache[key] = img
return img
def gen_fullyobservable_obs(self):
full_grid = self.grid.encode()
if self.random_color:
mask_randcolor = np.random.randint(6, size=(self.width, self.height))
full_grid[:, :, 1] = mask_randcolor # set random color range(5) to all grids
full_grid[self.agent_pos[0]][self.agent_pos[1]] = np.array([
OBJECT_TO_IDX['agent'],
COLOR_TO_IDX['red'],
self.agent_dir
])
return full_grid
def generate_random_path(self, epsilon=0.35):
goal = self.goal_pos
current_state = np.array(self.agent_start_pos)
duration = 0
while True:
if duration == 0:
duration = np.random.randint(1, 4)
difference_x, difference_y = goal[0] - current_state[0], goal[1] - current_state[1]
x_rand, y_rand = False, False
action_list, random_action_list = [], []
if difference_x != 0:
direction_diff_x = int(np.sign(difference_x))
action_list.append([direction_diff_x, 0]); random_action_list.append([-direction_diff_x, 0])
else:
random_action_list.append([np.random.randint(0, 1) * 2 - 1, 0])
x_rand = True
if difference_y != 0:
direction_diff_y = int(np.sign(difference_y))
action_list.append([0, direction_diff_y]); random_action_list.append([0, -direction_diff_y])
else:
random_action_list.append([0, np.random.randint(0, 1) * 2 - 1])
y_rand = True
if np.random.uniform(0, 1) > epsilon:
if len(action_list) == 0:
break
else:
current_action = action_list[int(np.random.randint(0, len(action_list)))]
else:
if x_rand:
current_action = random_action_list[0]
elif y_rand:
current_action = random_action_list[1]
else:
current_action = random_action_list[int(np.random.randint(0, len(random_action_list)))]
current_state[0] += current_action[0]
current_state[1] += current_action[1]
current_state[0] = np.clip(current_state[0], 0, self.rand_width - 1)
current_state[1] = np.clip(current_state[1], 0, self.rand_height - 1)
self.test_grid[current_state[0], current_state[1]] = 0
duration -= 1
if current_state[0] == goal[0] and current_state[1] == goal[1]: break
def reset_gen_map(self):
self.test_grid = np.zeros((self.rand_width, self.rand_height))
if self.transposed:
self.test_grid[0: self.rand_width, 1: self.rand_height - 1] = 1
else:
self.test_grid[1: self.rand_width - 1, 0: self.rand_height] = 1
self.test_grid[self.agent_start_pos[0], self.agent_start_pos[1]] = 0
self.test_grid[self.goal_pos[0], self.goal_pos[1]] = 0
def generate_map(self):
self.reset_gen_map()
while True:
for i in range(self.min_num_route):
self.generate_random_path()
remaining_lava_blocks = int(np.sum(self.test_grid))
if remaining_lava_blocks > self.max_lava_blocks:
break
self.reset_gen_map()
if remaining_lava_blocks > self.max_lava_blocks:
lava_indices = np.nonzero(self.test_grid)
lava_indices_x = lava_indices[0]
lava_indices_y = lava_indices[1]
perm = np.random.permutation(lava_indices_x.shape[0])
lava_indices_x = lava_indices_x[perm]
lava_indices_y = lava_indices_y[perm]
for i in range(int(remaining_lava_blocks - self.max_lava_blocks)):
self.test_grid[lava_indices_x[i], lava_indices_y[i]] = 0
def _gen_grid(self, width, height):
# Create an empty grid
self.grid = Grid(width, height)
# Generate the surrounding walls
# self.grid.wall_rect(0, 0, width, height)
# Place a goal square in the bottom-right corner
self.put_obj(Goal(), *self.goal_pos)
for i in range(0, self.test_grid.shape[0]):
for j in range(0, self.test_grid.shape[1]):
if self.test_grid[i, j] == 1:
self.grid.set(i, j, Lava())
# Place the agent
if self.agent_start_pos is not None:
self.agent_pos = self.agent_start_pos
self.agent_dir = self.agent_start_dir
else:
self.place_agent()
self.mission = "get to the green goal square"
def reset(self):
super().reset()
self.obs_curr = self.gen_fullyobservable_obs()
return self.obs_curr
def check_inside(self, pos):
flag_inside = True
if pos[0] < 0 or pos[0] >= self.width: flag_inside = False
if pos[1] < 0 or pos[1] >= self.height: flag_inside = False
return flag_inside
def step(self, action):
self.step_count += 1
reward = 0
done = False
if action == self.actions.left_forward:
self.agent_dir -= 1
if self.agent_dir < 0:
self.agent_dir += 4
elif action == self.actions.right_forward:
self.agent_dir = (self.agent_dir + 1) % 4
elif action == self.actions.back_forward:
self.agent_dir = (self.agent_dir + 2) % 4
elif action == self.actions.forward:
pass
else:
assert False, "unknown action"
# Get the position in front of the agent
fwd_pos = self.front_pos
# Get the contents of the cell in front of the agent
flag_inside = self.check_inside(fwd_pos)
if flag_inside:
fwd_cell = self.grid.get(*fwd_pos) if flag_inside else None
if fwd_cell == None or fwd_cell.can_overlap():
self.agent_pos = fwd_pos
if fwd_cell != None and fwd_cell.type == 'goal':
done = True
reward = self._reward()
if fwd_cell != None and fwd_cell.type == 'lava':
done = True
if self.step_count >= self.max_steps:
done = True
self.obs_curr = self.gen_fullyobservable_obs()
return self.obs_curr, np.sign(reward), done, {}