forked from mila-iqia/Conscious-Planning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcomponents_CP.py
378 lines (348 loc) · 25.2 KB
/
components_CP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
"""
COMPONENTS DEFINITIONS FOR CP AGENT AND VARIANTS
"""
import tensorflow as tf
from utils import MultiHeadAttention
class OBJECT_EXTRACTOR(tf.keras.layers.Layer):
"""extracting objects from feature representations: inputs a state representation and outputs a set of object embeddings"""
def __init__(self, feature_extractor, len_feature, norm=False):
super(OBJECT_EXTRACTOR, self).__init__(name='extractor')
self.feature_extractor = feature_extractor
self.type_env, self.type_extractor = self.feature_extractor.type_env, self.feature_extractor.type_extractor
self.convh, self.convw, self.m = self.feature_extractor.convh, self.feature_extractor.convw, self.feature_extractor.m
self.divisor_feature, self.dtype_converted_obs, self.features_learnable = self.feature_extractor.divisor_feature, self.feature_extractor.dtype_converted_obs, self.feature_extractor.features_learnable
self.len_feature = len_feature
self.norm = norm
if self.norm: self.layernorm = tf.keras.layers.LayerNormalization(axis=-1)
@tf.function
def __call__(self, obs):
x = tf.reshape(self.feature_extractor(obs), (-1, self.m, self.len_feature))
return self.layernorm(x) if self.norm else x
class TRANSFORMER_AUGMENTED(tf.keras.layers.Layer):
def __init__(self, len_object, num_layers, len_action=0, norm=False, n_head=8, QKV_depth=1, QKV_width=64, FC_depth=3, FC_width=64):
super(TRANSFORMER_AUGMENTED, self).__init__(name='transformer augmented')
self.len_object, self.len_action = len_object, len_action
self.layers = []
for _ in range(num_layers):
self.layers.append(SUBLAYER_TRANSFORMER_MHA(len_object=self.len_object, n_head=n_head, norm=norm, QKV_depth=QKV_depth, QKV_width=QKV_width))
if self.len_action:
self.layers.append(SUBLAYER_TRANSFORMER_ACTION(len_object=self.len_object, num_layers=FC_depth, width=FC_width, norm=norm))
else:
self.layers.append(SUBLAYER_TRANSFORMER_FC(len_object=self.len_object, num_layers=FC_depth, width=FC_width, norm=norm))
@tf.function
def __call__(self, objects, ebd_action=None):
if self.len_action:
for layer_mha, layer_action in zip(self.layers[::2], self.layers[1::2]):
objects = layer_mha(objects)
objects = layer_action(objects, ebd_action)
else:
for layer in self.layers: objects = layer(objects)
return objects
class ESTIMATOR_VALUE(tf.keras.layers.Layer):
""" The value estimator that takes a set of objects as input and outputs the estimated state-action values """
def __init__(self, len_feature, embed_pos, num_actions, num_layers=3, width=64, value_min=-1, value_max=1, atoms=64, transform=False, norm=False, n_head=8):
super(ESTIMATOR_VALUE, self).__init__(name='head_value')
self.len_feature, self.num_actions = len_feature, num_actions
self.value_min, self.value_max, self.atoms, self.transform = float(value_min), float(value_max), int(atoms), bool(transform)
self.embed_pos = embed_pos
self.len_object = self.len_feature + embed_pos.shape[-1]
self.layers = TRANSFORMER_AUGMENTED(len_object=self.len_object, len_action=0, num_layers=num_layers, n_head=n_head, norm=norm)
self.dim_scaler = tf.keras.layers.Conv1D(width, kernel_size=1, activation='relu', strides=1)
self.pooler = tf.keras.models.Sequential([
tf.keras.layers.Dense(width, activation='relu'),
tf.keras.layers.Dense(width, activation='relu'),
tf.keras.layers.Dense(num_actions * self.atoms),
])
@tf.function
def __call__(self, features, softmax=True, eval=False):
embed_pos = tf.repeat(self.embed_pos, features.shape[0], axis=0)
objects = tf.concat([features, embed_pos], axis=-1)
objects = self.dim_scaler(self.layers(objects))
summary = tf.reduce_mean(objects, axis=1)
logits = tf.reshape(self.pooler(summary), (-1, self.num_actions, self.atoms))
if softmax:
return tf.nn.softmax(logits, axis=-1)
else:
return logits
class SUBLAYER_TRANSFORMER_ACTION(tf.keras.layers.Layer):
def __init__(self, len_object=64, num_layers=2, width=64, residual=True, norm=False):
super(SUBLAYER_TRANSFORMER_ACTION, self).__init__(name='sublayer_FC_with_action')
self.residual, self.norm = residual, norm
if self.norm: self.layernorm = tf.keras.layers.LayerNormalization(axis=-1)
if num_layers == 1:
self.fc = tf.keras.layers.Conv1D(len_object, kernel_size=1, strides=1)
else:
self.fc = tf.keras.models.Sequential()
for num_layer in range(num_layers):
if num_layer < num_layers - 1:
self.fc.add(tf.keras.layers.Conv1D(width, kernel_size=1, strides=1, activation='relu'))
else:
self.fc.add(tf.keras.layers.Conv1D(len_object, kernel_size=1, strides=1))
@tf.function
def __call__(self, objects_in, action):
increment = self.fc(tf.concat([tf.repeat(tf.expand_dims(action, 1), objects_in.shape[1], axis=1), objects_in], axis=-1))
objects_out = objects_in + increment if self.residual else increment
return self.layernorm(objects_out) if self.norm else objects_out
class SUBLAYER_TRANSFORMER_FC(tf.keras.layers.Layer):
def __init__(self, len_object=64, num_layers=2, width=64, residual=True, norm=False):
super(SUBLAYER_TRANSFORMER_FC, self).__init__(name='sublayer_FC')
self.residual, self.norm = residual, norm
if self.norm: self.layernorm = tf.keras.layers.LayerNormalization(axis=-1)
if num_layers == 1:
self.fc = tf.keras.layers.Conv1D(len_object, kernel_size=1, strides=1)
else:
self.fc = tf.keras.models.Sequential()
for layer in range(num_layers):
if layer < num_layers - 1:
self.fc.add(tf.keras.layers.Conv1D(width, kernel_size=1, strides=1, activation='relu'))
else:
self.fc.add(tf.keras.layers.Conv1D(len_object, kernel_size=1, strides=1))
@tf.function
def __call__(self, objects_in):
increment = self.fc(objects_in)
objects_out = objects_in + increment if self.residual else increment
return self.layernorm(objects_out) if self.norm else objects_out
class SUBLAYER_TRANSFORMER_MHA(tf.keras.layers.Layer):
def __init__(self, len_object=64, n_head=8, residual=True, norm=False, QKV_depth=1, QKV_width=64):
super(SUBLAYER_TRANSFORMER_MHA, self).__init__(name='sublayer_MHA')
self.residual, self.norm = residual, norm
if self.norm: self.layernorm = tf.keras.layers.LayerNormalization(axis=-1)
self.self_attn = MultiHeadAttention(len_object, n_head, QKV_depth=QKV_depth, QKV_width=QKV_width)
@tf.function
def __call__(self, objects_in):
increment, _ = self.self_attn(objects_in, objects_in, objects_in)
objects_out = objects_in + increment if self.residual else increment
return self.layernorm(objects_out) if self.norm else objects_out
class MODEL_TRANSITION(tf.keras.Model):
def __init__(self, n_action_space, len_action, len_feature, embed_pos, noise_inject=False, len_latent=8, layers_model=3, n_head=8, QKV_depth=1, QKV_width=64, m=64, n=4, FC_width=64, FC_depth=2, norm=False, depth_reward_term_predictor=1, reward_min=-1, reward_max=1, atoms_reward=64, transform_reward=False, signal_predict_action=True, depth_FC_action_predictor=1, width_pool=64, type_attention='semihard'):
super(MODEL_TRANSITION, self).__init__(name='model_transition')
self.noise_inject, self.len_latent = noise_inject, len_latent
self.len_feature, self.n_action_space, self.len_action, self.embed_pos, self.len_pos, self.len_object = len_feature, n_action_space, len_action, embed_pos, embed_pos.shape[-1], len_feature + embed_pos.shape[-1]
self.n_head, self.norm = n_head, norm
self.m, self.n = m, min(n, m)
self.conscious = True if self.n < self.m else False
self.dynamics = TRANSFORMER_AUGMENTED(len_object=self.len_object, len_action=self.len_action, num_layers=layers_model, n_head=n_head, QKV_depth=QKV_depth, QKV_width=QKV_depth, FC_depth=FC_depth, FC_width=FC_width, norm=norm)
self.embed_actions = tf.keras.layers.Embedding(self.n_action_space, self.len_action, embeddings_initializer='identity', trainable=False)
if self.norm:
self.downscaler = tf.keras.models.Sequential([
tf.keras.layers.Conv1D(self.len_feature, kernel_size=1, strides=1),
tf.keras.layers.LayerNormalization(axis=-1)
])
else:
self.downscaler = tf.keras.layers.Conv1D(self.len_feature, kernel_size=1, strides=1)
self.signal_predict_action = bool(signal_predict_action)
if self.signal_predict_action: # do not use if using given features
self.len_object_augmented_action_predict = 2 * self.len_object if self.conscious else 2 * self.len_feature + self.len_pos
self.FC_action_predictor = TRANSFORMER_AUGMENTED(len_object=self.len_object_augmented_action_predict, len_action=0, num_layers=depth_FC_action_predictor, n_head=n_head, QKV_depth=QKV_depth, QKV_width=QKV_depth, FC_depth=1, FC_width=FC_width, norm=norm)
self.pooler_action_predictor = tf.keras.layers.Dense(n_action_space) # linear and I like it
self.predictor_reward_term = ESTIMATOR_REWARD_TERM2(len_object=self.len_object, len_action=self.len_action, width_pool=width_pool, depth_transformer=depth_reward_term_predictor, value_min=reward_min, value_max=reward_max, atoms=atoms_reward, transform=transform_reward, norm=norm, n_head=n_head)
if self.conscious:
self.compressor = COMPRESSOR_SET(len_object=self.len_object, depth_transformer=1, n_head=self.n_head, QKV_depth=QKV_depth, QKV_width=QKV_width, size_bottleneck=self.n, len_action=self.len_action, norm=self.norm, FC_width=FC_width, type_attention=type_attention)
self.decompressor = DECOMPRESSOR_SET(len_object=self.len_object, len_feature=self.len_feature, n_head=self.n_head, QKV_depth=QKV_depth, QKV_width=QKV_width, len_action=self.len_action, size_bottleneck=self.n)
if self.noise_inject:
import tensorflow_probability as tfp
self.dist_noise = tfp.distributions.MultivariateNormalDiag(loc=tf.zeros(self.len_latent), scale_diag=tf.ones(self.len_latent), validate_args=False, allow_nan_stats=True)
self.injector = tf.keras.models.Sequential([
tf.keras.layers.Conv1D(self.len_object, kernel_size=1, strides=1),
tf.keras.layers.LayerNormalization(axis=-1)
])
@tf.function
def get_attention(self, obses_curr, actions):
assert self.conscious
size_batch = obses_curr.shape[0]
ebd_actions = self.embed_actions(actions)
embed_pos = tf.repeat(self.embed_pos, size_batch, axis=0)
objects_curr = tf.concat([tf.reshape(obses_curr, [size_batch, self.m, -1]), embed_pos], axis=-1)
_, weights_attention = self.compressor(objects_curr, ebd_actions)
return weights_attention
@tf.function
def __call__(self, features_curr, action, predict_reward=True, predict_term=True, eval=False):
ebd_action = self.embed_actions(action)
embed_pos = tf.repeat(self.embed_pos, features_curr.shape[0], axis=0)
objects_curr = tf.concat([features_curr, embed_pos], axis=-1)
if self.conscious:
subset_curr, weights_att_compress = self.compressor(objects_curr, ebd_action)
subset_imagined = self.rollout_dynamics(subset_curr, ebd_action)
objects_imagined = self.decompressor(objects_curr, subset_imagined, ebd_action)
features_imagined = self.downscaler(objects_imagined)
reward_dist_imagined, term_logits_imagined = self.predictor_reward_term(subset_curr, ebd_action, subset_imagined, predict_reward=predict_reward, predict_term=predict_term)
else:
features_imagined, weights_att_compress = self.rollout_dynamics(objects_curr, ebd_action), None
objects_imagined = tf.concat([features_imagined, embed_pos], axis=-1)
reward_dist_imagined, term_logits_imagined = self.predictor_reward_term(objects_curr, ebd_action, objects_imagined, predict_reward=predict_reward, predict_term=predict_term)
return features_imagined, reward_dist_imagined, term_logits_imagined, weights_att_compress
@tf.function
def _predict_action(self, features_curr, features_next):
embed_pos = tf.repeat(self.embed_pos, features_curr.shape[0], axis=0)
objects_augmented = tf.concat([features_curr, features_next, embed_pos], axis=-1)
objects_augmented = self.FC_action_predictor(objects_augmented)
summary = tf.reduce_mean(objects_augmented, axis=1)
logits = self.pooler_action_predictor(summary)
return logits
@tf.function
def _predict_action_subset(self, subset_curr, subset_next):
objects_augmented = tf.concat([subset_curr, subset_next], axis=-1)
objects_augmented = self.FC_action_predictor(objects_augmented)
summary = tf.reduce_mean(objects_augmented, axis=1)
logits = self.pooler_action_predictor(summary)
return logits
@tf.function
def forward_train(self, features_curr, action):
ebd_action = self.embed_actions(action)
embed_pos = tf.repeat(self.embed_pos, features_curr.shape[0], axis=0)
objects_curr = tf.concat([features_curr, embed_pos], axis=-1)
if self.conscious:
subset_curr, _ = self.compressor(objects_curr, ebd_action)
subset_imagined = self.rollout_dynamics(subset_curr, ebd_action)
objects_imagined = self.decompressor(objects_curr, subset_imagined, ebd_action)
features_imagined = self.downscaler(objects_imagined)
reward_dist_imagined, term_logits_imagined = self.predictor_reward_term(subset_curr, ebd_action, subset_imagined)
else:
features_imagined = self.rollout_dynamics(objects_curr, ebd_action)
objects_imagined = tf.concat([features_imagined, embed_pos], axis=-1)
reward_dist_imagined, term_logits_imagined = self.predictor_reward_term(objects_curr, ebd_action, tf.stop_gradient(objects_imagined))
if self.signal_predict_action:
if self.conscious:
action_logits_imagined = self._predict_action_subset(subset_curr, subset_imagined)
else:
action_logits_imagined = self._predict_action(features_curr, tf.stop_gradient(features_imagined))
else:
action_logits_imagined = None
return features_imagined, reward_dist_imagined, term_logits_imagined, action_logits_imagined
@tf.function
def rollout_dynamics(self, objects, ebd_action):
if self.noise_inject:
size_batch = objects.shape[0]
noise = self.dist_noise.sample(size_batch)
objects = self.injector(tf.concat([tf.repeat(tf.expand_dims(noise, 1), objects.shape[1], axis=1), objects], axis=-1))
objects = self.dynamics(objects, ebd_action)
if self.conscious:
return objects
else:
features_imagined = self.downscaler(objects)
return features_imagined
class MODEL_TRANSITION_MINIGRIDOBS(tf.keras.Model): # TODO: implement the observation-level model for Dyna
def __init__(self, n_action_space, len_action, len_feature, embed_pos, layers_model=3, n_head=8, QKV_depth=1, QKV_width=64, m=64, n=4, FC_width=64, FC_depth=3, norm=False, depth_reward_term_predictor=1, reward_min=-1, reward_max=1, atoms_reward=64, transform_reward=False, width_pool=64, type_attention='semihard'):
super(MODEL_TRANSITION_MINIGRIDOBS, self).__init__()
self.len_feature, self.n_action_space, self.len_action, self.embed_pos, self.len_pos, self.len_object = len_feature, n_action_space, len_action, embed_pos, embed_pos.shape[-1], len_feature + embed_pos.shape[-1]
self.n_head, self.norm = n_head, norm
self.m, self.n = m, min(n, m)
self.conscious = True if self.n < self.m else False
self.dynamics = TRANSFORMER_AUGMENTED(len_object=self.len_object, len_action=self.len_action, num_layers=layers_model, n_head=n_head, QKV_depth=QKV_depth, QKV_width=QKV_depth, FC_depth=FC_depth, FC_width=FC_width, norm=norm)
self.embed_actions = tf.keras.layers.Embedding(self.n_action_space, self.len_action, embeddings_initializer='identity', trainable=False)
if self.norm:
self.downscaler = tf.keras.models.Sequential([
tf.keras.layers.Conv1D(self.len_feature, kernel_size=1, strides=1),
tf.keras.layers.LayerNormalization(axis=-1)
])
else:
self.downscaler = tf.keras.layers.Conv1D(self.len_feature, kernel_size=1, strides=1)
self.predictor_reward_term = ESTIMATOR_REWARD_TERM2(len_object=self.len_object, len_action=self.len_action, width_pool=width_pool, depth_transformer=depth_reward_term_predictor, value_min=reward_min, value_max=reward_max, atoms=atoms_reward, transform=transform_reward, norm=norm, n_head=n_head)
if self.conscious:
self.compressor = COMPRESSOR_SET(len_object=self.len_object, depth_transformer=1, n_head=self.n_head, QKV_depth=QKV_depth, QKV_width=QKV_width, size_bottleneck=self.n, len_action=self.len_action, norm=self.norm, FC_width=FC_width, type_attention=type_attention)
self.decompressor = DECOMPRESSOR_SET(len_object=self.len_object, len_feature=self.len_feature, n_head=self.n_head, QKV_depth=QKV_depth, QKV_width=QKV_width, len_action=self.len_action, size_bottleneck=self.n)
self.tail_feature = tf.constant(tf.zeros([1, self.m, len_feature - 3], dtype=tf.float32))
@tf.function
def __call__(self, obses_curr, actions, predict_reward=True, predict_term=True, eval=False):
size_batch = obses_curr.shape[0]
ebd_actions = self.embed_actions(actions)
embed_pos = tf.repeat(self.embed_pos, size_batch, axis=0)
tails_feature = tf.repeat(self.tail_feature, size_batch, axis=0)
objects_curr = tf.concat([tf.reshape(obses_curr, [size_batch, self.m, -1]), tails_feature, embed_pos], axis=-1)
if self.conscious:
subset_curr, _ = self.compressor(objects_curr, ebd_actions)
subset_imagined = self.rollout_dynamics(subset_curr, ebd_actions)
objects_imagined = self.decompressor(objects_curr, subset_imagined, ebd_actions)
features_imagined = self.downscaler(objects_imagined)
reward_dist_imagined, term_logits_imagined = self.predictor_reward_term(subset_curr, ebd_actions, subset_imagined, predict_reward=predict_reward, predict_term=predict_term)
else:
features_imagined, _ = self.rollout_dynamics(objects_curr, ebd_actions), None
objects_imagined = tf.concat([features_imagined, embed_pos], axis=-1)
reward_dist_imagined, term_logits_imagined = self.predictor_reward_term(objects_curr, ebd_actions, objects_imagined, predict_reward=predict_reward, predict_term=predict_term)
obses_imagined = tf.reshape(features_imagined[:, :, 0: 3], obses_curr.shape)
return obses_imagined, reward_dist_imagined, term_logits_imagined
@tf.function
def forward_train(self, obses_curr, actions):
size_batch = obses_curr.shape[0]
ebd_actions = self.embed_actions(actions)
embed_pos = tf.repeat(self.embed_pos, size_batch, axis=0)
tails_feature = tf.repeat(self.tail_feature, size_batch, axis=0)
objects_curr = tf.concat([tf.reshape(obses_curr, [size_batch, self.m, -1]), tails_feature, embed_pos], axis=-1)
if self.conscious:
subset_curr, _ = self.compressor(objects_curr, ebd_actions)
subset_imagined = self.rollout_dynamics(subset_curr, ebd_actions)
objects_imagined = self.decompressor(objects_curr, subset_imagined, ebd_actions)
features_imagined = self.downscaler(objects_imagined)
reward_dist_imagined, term_logits_imagined = self.predictor_reward_term(subset_curr, ebd_actions, subset_imagined)
else:
features_imagined = self.rollout_dynamics(objects_curr, ebd_actions)
objects_imagined = tf.concat([features_imagined, embed_pos], axis=-1)
reward_dist_imagined, term_logits_imagined = self.predictor_reward_term(objects_curr, ebd_actions, tf.stop_gradient(objects_imagined))
obses_imagined = tf.reshape(features_imagined[:, :, 0: 3], obses_curr.shape)
return obses_imagined, reward_dist_imagined, term_logits_imagined
@tf.function
def rollout_dynamics(self, objects, ebd_action):
objects = self.dynamics(objects, ebd_action)
if self.conscious:
return objects
else:
features_imagined = self.downscaler(objects)
return features_imagined
class COMPRESSOR_SET(tf.keras.layers.Layer):
def __init__(self, len_object=64, depth_transformer=1, n_head=8, QKV_depth=1, QKV_width=64, size_bottleneck=8, len_action=8, norm=False, FC_depth=3, FC_width=64, type_attention='semihard'):
super(COMPRESSOR_SET, self).__init__(name='compressor_set')
self.len_object, self.len_action, self.size_bottleneck = len_object, len_action, size_bottleneck
if type_attention == 'semihard':
self.self_attn = MultiHeadAttention(len_object, n_head, QKV_depth=QKV_depth, QKV_width=QKV_width, top_k=self.size_bottleneck)
elif type_attention == 'soft':
self.self_attn = MultiHeadAttention(len_object, n_head, QKV_depth=QKV_depth, QKV_width=QKV_width)
else:
raise NotImplementedError
self.queries_subset = tf.Variable(tf.keras.initializers.GlorotNormal()([1, self.size_bottleneck, self.len_object]), trainable=True)
self.layers = TRANSFORMER_AUGMENTED(len_object=self.len_object, len_action=self.len_action, num_layers=depth_transformer, n_head=n_head, QKV_depth=QKV_depth, QKV_width=QKV_depth, FC_depth=FC_depth, FC_width=FC_width, norm=norm)
@tf.function
def __call__(self, objects, ebd_action):
objects = self.layers(objects, ebd_action)
queries_subset_augmented = tf.repeat(self.queries_subset, objects.shape[0], axis=0) # tf.nn.relu(self.queries_subset)
subset, weights_attention = self.self_attn(objects, objects, queries_subset_augmented) # V, K, Q
return subset, weights_attention
class DECOMPRESSOR_SET(tf.keras.layers.Layer): #TODO: to be tested!
def __init__(self, len_object=64, len_feature=56, n_head=8, QKV_depth=1, QKV_width=64, len_action=8, size_bottleneck=8, residual=False):
super(DECOMPRESSOR_SET, self).__init__(name='decompressor_set')
self.len_feature, self.len_object, self.len_action = len_feature, len_object, len_action
self.residual = residual
self.self_attn = MultiHeadAttention(len_object, n_head, QKV_depth=QKV_depth, QKV_width=QKV_width)
@tf.function
def __call__(self, objects_in, subset, ebd_action):
objects_augmented = tf.concat([objects_in, tf.repeat(tf.reshape(ebd_action, [objects_in.shape[0], 1, self.len_action]), objects_in.shape[1], axis=1)], axis=-1) # tf.nn.relu(objects_in)
objects_tmp, _ = self.self_attn(subset, subset, objects_augmented) # V, K, Q
return objects_in + objects_tmp if self.residual else objects_tmp
class ESTIMATOR_REWARD_TERM2(tf.keras.layers.Layer):
def __init__(self, len_object, len_action, width_pool=128, depth_transformer=1, value_min=-1, value_max=1, atoms=128, transform=False, norm=False, n_head=8):
super(ESTIMATOR_REWARD_TERM2, self).__init__(name='estimator_reward_term')
self.value_min, self.value_max, self.atoms, self.transform = float(value_min), float(value_max), int(atoms), bool(transform) # transform not used in the member methods but will be referred by others!
self.len_object, self.len_action, self.len_augment = len_object, len_action, 2 * len_object + len_action
self.mlp = TRANSFORMER_AUGMENTED(len_object=self.len_augment, num_layers=depth_transformer, len_action=0, norm=norm, n_head=n_head)
self.dim_scaler = tf.keras.layers.Conv1D(width_pool, kernel_size=1, activation='relu', strides=1)
self.pooler_reward = tf.keras.models.Sequential([
tf.keras.layers.Dense(width_pool, activation='relu'),
tf.keras.layers.Dense(width_pool, activation='relu'),
tf.keras.layers.Dense(self.atoms),
tf.keras.layers.Softmax(axis=-1),
])
self.pooler_term = tf.keras.models.Sequential([
tf.keras.layers.Dense(width_pool, activation='relu'),
tf.keras.layers.Dense(width_pool, activation='relu'),
tf.keras.layers.Dense(2),
])
@tf.function
def __call__(self, subset_curr, ebd_action, subset_next, predict_reward=True, predict_term=True):
if not predict_reward and not predict_term: # save time
return None, None
else:
subset_augmented = tf.concat([subset_curr, subset_next, tf.repeat(tf.expand_dims(ebd_action, 1), subset_curr.shape[1], axis=1)], axis=-1)
subset_augmented = self.dim_scaler(self.mlp(subset_augmented))
summary = tf.reduce_mean(subset_augmented, axis=-2)
reward = self.pooler_reward(summary) if predict_reward else None
term = self.pooler_term(summary) if predict_term else None
return reward, term