forked from ramdrop/autoplace
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
394 lines (335 loc) · 19.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
# %% pytorch
import torch
import argparse
from torch.utils.data import DataLoader
import torchvision.models as models
import torch.nn as nn
import torch.optim as optim
from torch.utils.tensorboard import SummaryWriter
# public library
import logging
from datetime import datetime
import os
import sys
import numpy as np
import tqdm
import h5py
import json
import shutil
import importlib
import random
import atexit
os.sys.path.append(os.path.join(os.path.dirname(__file__), '../'))
# private library
import nuscene as dataset
import evaluate as evaluate
class FixRandom():
def __init__(self, seed) -> None:
self.seed = seed
self.set_everything_fixed()
def set_everything_fixed(self):
torch.manual_seed(self.seed)
random.seed(self.seed)
np.random.seed(self.seed)
torch.backends.cudnn.benchmark = False
torch.use_deterministic_algorithms(True)
os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8'
def seed_worker(self, worker_id):
worker_seed = self.seed
np.random.seed(worker_seed)
random.seed(worker_seed)
def quick_log(logfile, *args):
with open(os.path.join(opt.runsPath, logfile), 'a') as f:
for arg in args:
f.write(arg)
f.flush()
print(arg, end='')
def update_opt_from_json(flag_file, opt):
restore_var = ['net', 'seqLen', 'num_clusters', 'output_dim', 'structDir', 'imgDir', 'lrStep', 'lrGamma', 'weightDecay', 'momentum', 'num_clusters', 'optim', 'margin', 'seed', 'patience']
# flag_file = os.path.join(opt.resume, 'flags.json')
if os.path.exists(flag_file):
with open(flag_file, 'r') as f:
stored_flags = {'--' + k: str(v) for k, v in json.load(f).items() if k in restore_var}
to_del = []
for flag, val in stored_flags.items():
for act in parser._actions:
if act.dest == flag[2:]:
# store_true / store_false args don't accept arguments, filter these
if type(act.const) == type(True):
if val == str(act.default):
to_del.append(flag)
else:
stored_flags[flag] = ''
for flag in to_del:
del stored_flags[flag]
train_flags = [x for x in list(sum(stored_flags.items(), tuple())) if len(x) > 0]
print('restored flags:', train_flags)
opt = parser.parse_args(train_flags, namespace=opt)
return opt
def evaluate_model(opt, seed_worker=None,):
# load configurations
opt.runsPath = opt.resume
print('resume path:', opt.resume)
opt = update_opt_from_json(os.path.join(opt.resume, 'flags.json'), opt)
torch.cuda.set_device(opt.cGPU)
device = torch.device("cuda")
print('device: {} {}'.format(device, torch.cuda.current_device()))
# build model and load parameters
reparsed_network = '{}.{}.networks.{}'.format(opt.resume.split('/')[-2], opt.resume.split('/')[-1], opt.net)
network = importlib.import_module(reparsed_network)
model = network.get_model(opt, require_init=False)
resume_ckpt = os.path.join(opt.resume, 'checkpoint_best.pth.tar')
# resume_ckpt = os.path.join(opt.resume, 'checkpoint_last.pth.tar')
checkpoint = torch.load(resume_ckpt, map_location=lambda storage, loc: storage)
opt.start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['state_dict'])
model.to(device)
# load dataset
if opt.split == 'val':
whole_test_set = dataset.get_whole_val_set(opt)
elif opt.split == 'test':
whole_test_set = dataset.get_whole_test_set(opt)
print('database:{}, query:{}'.format(whole_test_set.dbStruct.numDb, whole_test_set.dbStruct.numQ))
# evaluate
recalls = evaluate.get_recall(opt, model, whole_test_set, seed_worker)
# export results
with open(os.path.join(opt.runsPath, 'evaluate.log'), 'a') as f:
f.write('[{}]\t'.format(opt.split))
f.write('recall@1: {:.2f}\t'.format(recalls[1]))
f.write('recall@5: {:.2f}\t'.format(recalls[5]))
f.write('recall@10: {:.2f}\t'.format(recalls[10]))
f.write('recall@20: {:.2f}\n'.format(recalls[20]))
f.flush()
return recalls
def train(opt, seed_worker=None, trial=None):
# --------------------------------------- 1. set device -------------------------------------- #
cuda = not opt.nocuda
if cuda and not torch.cuda.is_available():
raise Exception("No GPU found, please run with --nocuda")
torch.cuda.set_device(opt.cGPU)
device = torch.device("cuda")
print('train.py device: {} {}'.format(device, torch.cuda.current_device()))
# ---------------------------------------- 2A. resume ---------------------------------------- #
if opt.resume != '':
# load model
print('resume path:', opt.resume)
opt = update_opt_from_json(os.path.join(opt.resume, 'flags.json'), opt)
opt.runsPath = opt.resume
reparsed_network = '{}.{}.networks.{}'.format(opt.resume.split('/')[-2], opt.resume.split('/')[-1], opt.net)
network = importlib.import_module(reparsed_network)
model = network.get_model(opt, require_init=False)
resume_ckpt = os.path.join(opt.resume, 'checkpoint_last.pth.tar')
checkpoint = torch.load(resume_ckpt, map_location=lambda storage, loc: storage)
model.load_state_dict(checkpoint['state_dict'])
# load optimizer
if opt.optim == 'sgd':
optimizer = optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=opt.lr, momentum=opt.momentum, weight_decay=opt.weightDecay)
if not opt.train_att:
optimizer.load_state_dict(checkpoint['optimizer'])
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=opt.lrStep, gamma=opt.lrGamma)
elif opt.optim == 'adam':
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), opt.lr)
opt.start_epoch = checkpoint['epoch']
print('current epoch:', opt.start_epoch)
if opt.train_att:
model = network.freeze_layers(opt, model)
# ---------------------------------- 2B. create new training --------------------------------- #
else:
with open(os.path.join(opt.structDir, 'pcl_parameter.json'), 'r') as f:
record = json.load(f)
opt.runsPath = os.path.join(
opt.logsPath,
opt.imgDir.split('/')[-2] + '_' + opt.net + '_' + '_seq' + str(opt.seqLen) + '_' + opt.comment + '_' +
datetime.now().strftime('%b%d--%H-%M-%S'))
if not os.path.exists(opt.logsPath):
os.mkdir(opt.logsPath)
if not os.path.exists(opt.runsPath):
os.mkdir(opt.runsPath)
os.mkdir(os.path.join(opt.runsPath, 'networks'))
# build model
assert os.path.exists('networks/{}.py'.format(opt.net)), 'cannot find ' + '{}.py'.format(opt.net)
network = importlib.import_module('networks.' + opt.net)
for file in [__file__, 'nuscene.py', 'networks/{}.py'.format(opt.net)]:
shutil.copyfile(file, os.path.join(opt.runsPath, 'networks', file.split('/')[-1]))
model = network.get_model(opt, require_init=True) # summary(model, input_size=(3, 3, 200, 200), batch_size=32)
# build optimizer
if opt.optim == 'sgd':
optimizer = optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=opt.lr, momentum=opt.momentum, weight_decay=opt.weightDecay)
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=opt.lrStep, gamma=opt.lrGamma)
elif opt.optim == 'adam':
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), opt.lr)
def unexpected_exit():
if opt.resume == '':
import shutil
shutil.rmtree(opt.runsPath)
print('unexpected exit: remove current log.')
else:
print('resume stops')
atexit.register(unexpected_exit)
model = model.to(device)
if opt.nGPU > 1:
model = nn.DataParallel(model)
# ------------------------------------- 3. loss function ------------------------------------- #
criterion = nn.TripletMarginLoss(margin=opt.margin**0.5, p=2, reduction='sum').to(device)
# -------------------------------------- 4. load dataset ------------------------------------- #
# for feature cache
whole_train_set = dataset.get_whole_training_set(opt)
whole_training_data_loader = DataLoader(dataset=whole_train_set, num_workers=opt.threads, batch_size=opt.cacheBatchSize, shuffle=False, pin_memory=cuda, worker_init_fn=seed_worker)
whole_val_set = dataset.get_whole_val_set(opt)
whole_val_data_loader = DataLoader(dataset=whole_val_set, num_workers=opt.threads, batch_size=opt.cacheBatchSize, shuffle=False, pin_memory=cuda, worker_init_fn=seed_worker)
whole_test_set = dataset.get_whole_test_set(opt)
# for train tuples
train_set = dataset.get_training_query_set(opt, opt.margin)
val_set = dataset.get_val_query_set(opt, opt.margin)
print('train database:{}, training query:{}, val query:{}, test query:{}'.format(train_set.dbStruct.numDb, len(train_set), whole_val_set.dbStruct.numQ, whole_test_set.dbStruct.numQ))
# -------------------------------------- 5. tensorboard -------------------------------------- #
writer = SummaryWriter(log_dir=opt.runsPath)
with open(os.path.join(opt.runsPath, 'flags.json'), 'w') as f:
f.write(json.dumps({k: v for k, v in vars(opt).items()}, indent=''))
# ---------------------------------------- 6. training --------------------------------------- #
not_improved = 0
best_recall_at_1 = 0
for epoch in range(opt.start_epoch + 1, opt.nEpochs + 1):
current_lr = optimizer.state_dict()['param_groups'][0]['lr']
epoch_loss = 0
startIter = 1 # keep track of batch iter across subsets for logging
nBatches = (len(train_set) + opt.batchSize - 1) // opt.batchSize
# ------------------------------------ 6.1 build cache ----------------------------------- #
print('build cache..')
model.eval()
train_set.cache = os.path.join(opt.runsPath, train_set.whichSet + '_feat_cache.hdf5')
with h5py.File(train_set.cache, mode='w') as h5:
h5feat = h5.create_dataset("features", [len(whole_train_set), opt.output_dim], dtype=np.float32)
with torch.no_grad():
for iteration, (input, indices) in enumerate(tqdm.tqdm(whole_training_data_loader, ncols=40), 1):
input = input.to(device) # torch.Size([32, 3, 154, 154]) ([32, 5, 3, 200, 200])
vlad_encoding = model(input)
h5feat[indices.detach().numpy(), :] = vlad_encoding.detach().cpu().numpy()
del input, vlad_encoding
# ------------------------------------- 6.2 training ------------------------------------- #
print('training..')
model.train()
training_data_loader = DataLoader(dataset=train_set, num_workers=opt.threads, batch_size=opt.batchSize, shuffle=True, collate_fn=dataset.collate_fn, pin_memory=cuda, worker_init_fn=seed_worker) # pin_memory=cuda ?
for iteration, (query, positives, negatives, negCounts, indices) in enumerate(tqdm.tqdm(training_data_loader, ncols=40), startIter):
# set_trace()
if query is None:
continue # in case we get an empty batch
# some reshaping to put query, pos, negs in a single (N, 3, H, W) tensor, where N = batchSize * (nQuery + nPos + nNeg)
B, L, C, H, W = query.shape # ([8, 3, 200, 200])
nNeg = torch.sum(negCounts) # tensor(80) = torch.sum(torch.Size([8]))
input = torch.cat([query, positives, negatives]) # ([96, 3, 200, 200]) = torch.cat(([8, 3, 200, 200]), ([8, 3, 200, 200]), ([80, 3, 200, 200]), ([8]))
# input device: cpu, # input device: cuda 1, so what is the point of pin_memory?
input = input.to(device) # ([96, 1, 3, 200, 200])
vlad_encoding = model(input)
vladQ, vladP, vladN = torch.split(vlad_encoding, [B, B, nNeg])
optimizer.zero_grad()
# calculate loss for each Query, Positive, Negative triplet
# due to potential difference in number of negatives have to
# do it per query, per negative
loss = 0
for i, negCount in enumerate(negCounts):
for n in range(negCount):
negIx = (torch.sum(negCounts[:i]) + n).item()
loss += criterion(vladQ[i:i + 1], vladP[i:i + 1], vladN[negIx:negIx + 1])
loss /= nNeg.float().to(device) # normalise by actual number of negatives
loss.backward()
optimizer.step()
del input, vlad_encoding, vladQ, vladP, vladN
del query, positives, negatives
batch_loss = loss.item()
epoch_loss += batch_loss
if iteration % 10 == 0 or nBatches <= 10 or iteration == 1:
writer.add_scalar('train_batch_loss', batch_loss, ((epoch - 1) * nBatches) + iteration)
writer.add_scalar('train_batch_nNeg', nNeg, ((epoch - 1) * nBatches) + iteration)
startIter += len(training_data_loader)
del training_data_loader
if 'loss' in locals():
del loss
optimizer.zero_grad()
torch.cuda.empty_cache()
os.remove(train_set.cache) # delete HDF5 cache
train_avg_loss = epoch_loss / nBatches
writer.add_scalar('train_epoch_avg_loss', train_avg_loss, epoch)
for name, param in model.named_parameters():
if param.grad is not None:
writer.add_histogram(name + '_grad', param.grad, epoch)
writer.add_histogram(name + '_data', param, epoch)
if opt.optim == 'sgd':
scheduler.step()
if (epoch % opt.evalEvery) == 0:
current_recalls = evaluate.get_recall(opt, model, whole_val_set, seed_worker, epoch, writer)
is_best = 0
if epoch > 25:
is_best = current_recalls[1] > best_recall_at_1
if is_best:
not_improved = 0
best_recall_at_1 = current_recalls[1]
torch.save({
'epoch': epoch,
'state_dict': model.state_dict(),
'recalls': current_recalls,
'best_recall_at_1': best_recall_at_1,
'optimizer': optimizer.state_dict()
}, os.path.join(opt.runsPath, 'checkpoint_best.pth.tar'))
else:
not_improved += 1
if opt.patience > 0 and not_improved > (opt.patience / opt.evalEvery):
print('Performance did not improve for', opt.patience, 'epochs. Stopping.')
break
quick_log('screen.log', 'epoch: {:>2d}\t'.format(epoch), 'lr: {:>.8f}\t'.format(current_lr), 'train loss: {:>.4f}\t'.format(train_avg_loss),
'recall@1: {:.2f}\t'.format(current_recalls[1]), 'recall@5: {:.2f}\t'.format(current_recalls[5]), 'recall@10: {:.2f}\t'.format(current_recalls[10]),
'recall@20: {:.2f}\t'.format(current_recalls[20]), '*\n' if is_best else '\n')
writer.close()
torch.save({
'epoch': epoch,
'state_dict': model.state_dict(),
'recalls': current_recalls,
'best_recall_at_1': best_recall_at_1,
'optimizer': optimizer.state_dict()
}, os.path.join(opt.runsPath, 'checkpoint_last.pth.tar'))
atexit.unregister(unexpected_exit)
return current_recalls[1]
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='milliPlace')
parser.add_argument('--structDir', type=str, default='dataset/7n5s_xy11', help='Path for structure.')
parser.add_argument('--imgDir', type=str, default='dataset/7n5s_xy11/img', help='Path for images.')
parser.add_argument('--comment', type=str, default='', help='comment')
parser.add_argument('--seqLen', type=int, default=1, help='number of sequence to use.')
parser.add_argument('--mode', type=str, default='train', help='mode', choices=['train', 'evaluate'])
parser.add_argument('--net', type=str, default='st', help='network')
parser.add_argument('--batchSize', type=int, default=8, help='Number of triplets (query, pos, negs). Each triplet consists of 12 images.')
parser.add_argument('--cacheBatchSize', type=int, default=32, help='Batch size for caching and testing')
parser.add_argument('--cacheRefreshRate', type=int, default=0, help='How often to refresh cache, in number of queries. 0 for off')
parser.add_argument('--nEpochs', type=int, default=50, help='number of epochs to train for')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N', help='manual epoch number (useful on restarts)')
parser.add_argument('--nGPU', type=int, default=1, help='number of GPU to use.')
parser.add_argument('--cGPU', type=int, default=0, help='core of GPU to use.') # modified
parser.add_argument('--optim', type=str, default='sgd', help='optimizer to use', choices=['sgd', 'adam'])
parser.add_argument('--lr', type=float, default=0.01, help='Learning Rate.')
parser.add_argument('--lrStep', type=float, default=5, help='Decay LR ever N steps.')
parser.add_argument('--lrGamma', type=float, default=0.5, help='Multiply LR by Gamma for decaying.')
parser.add_argument('--weightDecay', type=float, default=0.001, help='Weight decay for SGD.')
parser.add_argument('--momentum', type=float, default=0.9, help='Momentum for SGD.')
parser.add_argument('--nocuda', action='store_true', help='Dont use cuda')
parser.add_argument('--threads', type=int, default=8, help='Number of threads for each data loader to use')
parser.add_argument('--seed', type=int, default=1234, help='Random seed to use.')
parser.add_argument('--logsPath', type=str, default='./logs_v3', help='Path to save runs to.')
parser.add_argument('--runsPath', type=str, default='./eval', help='Path to save runs to.')
parser.add_argument('--resume', type=str, default='', help='Path to load checkpoint from, for resuming training or testing.')
parser.add_argument('--evalEvery', type=int, default=1, help='Do a validation set run, and save, every N epochs.')
parser.add_argument('--patience', type=int, default=5, help='Patience for early stopping. 0 is off.')
parser.add_argument('--split', type=str, default='val', help='Split to use', choices=['val', 'test'])
parser.add_argument('--num_clusters', type=int, default=64, help='Number of NetVlad clusters. Default=64')
parser.add_argument('--encoder_dim', type=int, default=512, help='Number of feature dimension. Default=512')
parser.add_argument('--output_dim', type=int, default=32768, help='Number of feature dimension. Default=512')
parser.add_argument('--margin', type=float, default=0.1, help='Margin for triplet loss. Default=0.1')
parser.add_argument('--fromscratch', action='store_true', help='Train from scratch rather than using pretrained models')
opt = parser.parse_args()
fix_random = FixRandom(opt.seed)
seed_worker = fix_random.seed_worker
fix_random.set_everything_fixed()
if opt.mode == 'train':
last_recall_1 = train(opt, seed_worker)
print('last_recall_1:', last_recall_1)
elif opt.mode == 'evaluate':
evaluate_model(opt, seed_worker)