Use eval.py to run inference on all test data. It will create folder {save_dir}/results/{dataset_name}/{scene_name}
and save the rendered
images.
Run:
python eval.py \
--root_dir {path to the dataset} \
--save_dir save \
--dataset_name phototourism --scene_name {scene name} \
--split {test / train} \
--N_vocab 1500 \
--ckpt_path {the path of the CKPT of the model} \
--img_wh {image size}
For example:
python eval.py \
--root_dir data/st_paul \
--save_dir save \
--dataset_name phototourism --scene_name st_paul \
--split train \
--N_vocab 1500 \
--ckpt_path ./sem_results/st_paul_save/ckpts/test/windows/epoch=3.ckpt \
--img_wh 320 240
The 'split' field defines on which dataset to run the evaluation:
train - will run it on the training dataset.
test - will run it on your chosen cameras locations and interpolate between them.
Please notice that if you use 'test' as split you can use the following flags:
--num_frames {number of frames to interpolate}
--images_ids {images IDs locations to interpolate}
for example:
--num_frames [24, 8]
--images_ids [40, 588]
In addition, if you like to change the appearance of the scene you can use eval_appearance.py. It will interpolate two different appearances of two images.
Run:
python eval_appearance.py \
--root_dir {path to the dataset} \
--save_dir save \
--dataset_name phototourism --scene_name {scene name} \
--split {test / train} \
--N_vocab 1500 \
--ckpt_path {the path of the CKPT of the model} \
--img_wh {image size}
--images_ids {images ids to eval} \
--images_id_appearance_first {the appearance of the image ID you want to start with} \
--images_id_appearance_last {the appearance of the image ID you want to end with} \
--num_frames {number of frames}
For example:
python eval_appearance.py \
--root_dir data/st_paul \
--save_dir save \
--dataset_name phototourism --scene_name st_paul \
--split test \
--N_vocab 1500 \
--ckpt_path ./sem_results/st_paul_save/ckpts/test/windows/epoch=3.ckpt \
--img_wh 320 240 \
--images_ids 35 35 \
--images_id_appearance_first 73 \
--images_id_appearance_last 1 \
--num_frames 48 1