-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathchapter_2_lesson_1.qmd
605 lines (442 loc) · 14.1 KB
/
chapter_2_lesson_1.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
---
title: "Covariance and Correlation"
subtitle: "Chapter 2: Lesson 1"
format: html
editor: source
sidebar: false
---
```{r}
#| include: false
source("common_functions.R")
```
```{=html}
<script type="text/javascript">
function showhide(id) {
var e = document.getElementById(id);
e.style.display = (e.style.display == 'block') ? 'none' : 'block';
}
function openTab(evt, tabName) {
var i, tabcontent, tablinks;
tabcontent = document.getElementsByClassName("tabcontent");
for (i = 0; i < tabcontent.length; i++) {
tabcontent[i].style.display = "none";
}
tablinks = document.getElementsByClassName("tablinks");
for (i = 0; i < tablinks.length; i++) {
tablinks[i].className = tablinks[i].className.replace(" active", "");
}
document.getElementById(tabName).style.display = "block";
evt.currentTarget.className += " active";
}
</script>
```
## Learning Outcomes
{{< include outcomes/_chapter_2_lesson_1_outcomes.qmd >}}
## Preparation
- Read Sections 2.1-2.2.2 and 2.2.4
## Learning Journal Exchange (10 min)
- Review another student's journal
- What would you add to your learning journal after reading your partner's?
- What would you recommend your partner add to their learning journal?
- Sign the Learning Journal review sheet for your peer
## Class Activity: Variance and Standard Deviation (10 min)
We will explore the variance and standard deviation in this section.
::: {.callout-tip icon=false title="Check Your Understanding"}
- What do the standard deviation and the variance measure?
:::
The following code simulates observations of a random variable. We will use these data to explore the variance and standard deviation.
```{r}
# Set random seed
set.seed(2412)
# Specify means and standard deviation
n <- 5 # number of points
mu <- 10 # mean
sigma <- 3 # standard deviation
# Simulate normal data
sim_data <- data.frame(x = round(rnorm(n, mu, sigma), 1)) |>
arrange(x)
```
```{r}
#| echo: false
# Convert to character string
# Initialize empty character vector
five_vals <- sim_data$x[1]
# Simulate normal data
for(t in 2:n){
five_vals <- paste(five_vals, sim_data$x[t], sep=", ")
}
```
The data simulated by this process are:
<center>`r five_vals`</center>
::: {.callout-tip icon=false title="Check Your Understanding"}
- Find the sample mean of these numbers. <!-- `r mean(sim_data$x)`. -->
- What are some ways to interpret the mean?
:::
The variance and standard deviation are individual numbers that summarize how far the data are from the mean. We first compute the deviations from the mean, $x - \bar x$. This is the directed distance from the mean to each data point.
```{r}
#| echo: false
#| warning: false
temp <- sim_data |>
mutate(deviations = x - mean(x)) |>
arrange(desc(x))
mean_x <- mean(temp$x)
min_x <- floor(min(temp$x))
max_x <- ceiling(max(temp$x))
range <- max_x - min_x
lower <- min_x - range / 10
upper <- max_x + range / 10
ticks <- ceiling(lower):floor(upper)
ticks_df <- data.frame(x = ticks, y = -1)
# Plot deviations from the mean
ggplot(temp, aes(x = x, y = 0)) +
# x-axis
annotate("segment", x = lower, xend = upper, y = -1, yend = -1, colour = "black", linewidth = 1, arrow = arrow(length = unit(0.3,"cm"))) +
# Add tick marks and labels
annotate("segment", x = ticks, xend = ticks, y = -1.25, yend = -0.75, colour = "black", linewidth = 0.5) +
geom_text(aes(x = upper, y = -1, label = "x"), size = 4, hjust = -1, vjust = 0, color = "black") +
geom_text(data = ticks_df, aes(x = x, y = y, label = x), size = 4, vjust = 2, color = "black") +
# Deviations from the mean arrows and lines
geom_segment(aes(x = mean_x, xend = x, y = 1:n, yend = 1:n), colour = okabeito_colors_list[2], linewidth = 1, arrow = arrow(length = unit(0.3,"cm"))) +
geom_segment(aes(x = x, xend = x, y = 0.25, yend = 1:n - 0.25), colour = okabeito_colors_list[2], linewidth = 0.5, linetype = "dashed") +
geom_text(aes(x = (mean_x + x)/2, y = 1:n, label = round(deviations, 2)), size = 3, vjust = -0.5) +
# Marker for the mean
annotate("segment", x = mean_x, xend = mean_x, y = -2.5, yend = -1.25, colour = okabeito_colors_list[1], linewidth = 1, arrow = arrow(length = unit(0.3,"cm"))) +
geom_segment(aes(x = mean_x, xend = mean_x, y = -0.75, yend = n + 1), colour = okabeito_colors_list[1], linewidth = 0.5, linetype = "dashed") +
# Add xbar
geom_label(
label=expression(bar(x) == " "),
x=mean_x-0.1,
y=-2.6,
color = okabeito_colors_list[1],parse = TRUE,label.size = NA, fill=NA)+
# add mean value
geom_label(
label=paste0(round(mean_x, 2)),
x=mean_x+0.3,
y=-2.6,
color = okabeito_colors_list[1],label.size = NA, fill=NA)+
geom_point(size = 3, color = okabeito_colors_list[2]) +
geom_text(aes(x = x, y = rep(0,n), label = x), size = 3, vjust = 1.75) +
# theme
theme_void() +
theme(axis.title.y = element_blank()) +
theme(plot.title = element_text(hjust = 0.5)) +
theme(aspect.ratio = 0.4) +
labs(title = "Deviations from the Mean",
x = "Value",
y = "")
```
We can summarize this information in a table:
#### Table 1: Deviations from the mean
```{r}
#| echo: false
sim_data |>
mutate(
xx = x - mean(x),
extra1 = " ",
extra2 = " ",
extra3 = " ",
extra4 = " "
) |>
rename(
"$$x_t$$" = x,
"$$x_t-\\bar x$$" = xx,
" " = extra1,
" " = extra2,
" " = extra3,
" " = extra4
) |>
display_table("0.75in")
```
::: {.callout-tip icon=false title="Check Your Understanding"}
How can we obtain one number that summarizes how spread out the data are from the mean? We may try averaging the deviations from the mean.
- What is the average deviation from the mean?
- Will we get the same value with other data sets, or is this just a coincidence?
- What could you do to prevent this from happening?
- Apply your idea. Compute the resulting value that summarizes the spread. What do you get?
- What is the relationship between the sample variance and the sample standard deviation?
- Use a table like the one above to verify that the sample variance is `r var(sim_data$x)`.
- Show that the sample standard deviation is `r sd(sim_data$x) |> round(4)`.
:::
## Class Activity: Covariance and Correlation (15 min)
```{=html}
<iframe id="CoAndCo" src="https://posit.byui.edu/content/564c2e71-3d0b-43a6-8c6f-d402125c8b28" style="border: none; width: 100%; height: 2330px" frameborder="0"></iframe>
```
::: {.callout-tip icon=false title="Check Your Understanding"}
- What do you get if you multiply the equations for $r$, $s_x$, and $s_y$ together?
:::
$$
r \cdot s_x \cdot s_y
=
\frac{\sum\limits_{t=1}^n (x - \bar x)(y - \bar y)}{\sqrt{\sum\limits_{t=1}^n (x - \bar x)^2} \sqrt{\sum\limits_{t=1}^n (y - \bar y)^2}}
\cdot
\sqrt{ \frac{\sum\limits_{t=1}^n (x - \bar x)^2}{n-1} }
\cdot
\sqrt{ \frac{\sum\limits_{t=1}^n (y - \bar y)^2}{n-1} }
=
?
$$
::: {.callout-tip icon=false title="Check Your Understanding"}
- Use the numerical values above to confirm your result. Any discrepancy is due to roundoff error.
:::
## Team Activity: Computational Practice (15 min)
```{r}
#| echo: false
# Set random seed
set.seed(300)
# Specify means and correlation coefficient
n <- 6 # number of points
mu <- c(3, 1) # mean vector (mu_x, mu_y)
sigma_x <- 3.5 # standard deviation x
sigma_y <- 2 # standard deviation y
rho <- -0.85 # correlation coefficient
# Define variance-covariance matrix
sigma <- matrix(
c(sigma_x^2,
rho*sigma_x*sigma_y,
rho*sigma_x*sigma_y,
sigma_y^2),
nrow = 2)
# Simulate bivariate normal data
mvn_data_6 <- MASS::mvrnorm(n, mu, sigma) |>
data.frame() |>
rename(x = X1, y = X2) |>
round_df(1)
```
#### Table 3: Computational Practice
::: {.callout-tip icon=false title="Download Excel Handout"}
<a href="https://github.com/TBrost/BYUI-Timeseries-Drafts/raw/master/handouts/chapter_2_1_handout.xlsx" download="chapter_2_1_handout.xlsx"> Tables-Handout-Excel </a>
:::
The table below contains values of two time series $\{x_t\}$ and $\{y_t\}$ observed at times $t = 1, 2, \ldots, 6$. We will use these values to practice finding the means, standard deviations, correlation coefficient, and covariance without using built-in R functions.
```{r}
#| echo: false
cov_dat <- mvn_data_6 |>
mutate(t = row_number()) |>
dplyr::select(t, x, y) |>
mutate(
xx = x - mean(x),
xx2 = xx^2,
yy = y - mean(y),
yy2 = yy^2,
xy = (x - mean(x)) * (y - mean(y))
)
cov_dat_summary <- cov_dat |>
summarize(
x = sum(x),
y = sum(y),
xx = sum(xx),
xx2 = sum(xx2),
yy = sum(yy),
yy2 = sum(yy2),
xy = sum(xy)
) |>
round_df(5) |>
mutate(across(everything(), as.character)) |>
mutate(t = "sum")
temp <- cov_dat |>
round_df(5) |>
mutate(across(everything(), as.character)) |>
bind_rows(cov_dat_summary)
temp |>
blank_out_cells_in_df(ncols_to_keep = 3, nrows_to_keep = 1) |>
bind_rows(temp |> tail(1) |> blank_out_cells_in_df(ncols_to_keep = 0, nrows_to_keep = 0) |> mutate(t = "$$~$$")) |>
rename(
"$$t$$" = t,
"$$x_t$$" = x,
"$$y_t$$" = y,
"$$x_t-\\bar x$$" = xx,
"$$(x_t - \\bar x)^2$$" = xx2,
"$$y_t-\\bar y$$" = yy,
"$$(y_t-\\bar y)^2$$" = yy2,
"$$(x_t - \\bar x)(y_t-\\bar y)$$" = xy
) |>
display_table()
```
Use the table above to determine these values:
::: columns
::: {.column width="30%"}
- $\bar x =$
- $\bar y =$
:::
::: {.column width="5%"}
<!-- empty column to create gap -->
:::
::: {.column width="30%"}
- $s_x =$
- $s_y =$
:::
::: {.column width="5%"}
<!-- empty column to create gap -->
:::
::: {.column width="30%"}
- $r =$
- $\\cov(x,y) =$
:::
:::
Here is a scatterplot of the data.
<center>
```{r fig.asp=0.75}
#| echo: false
#| warning: false
cov_dat <- cov_dat |>
mutate(
sign = case_when(
xy > 0 ~ "positive",
xy < 0 ~ "negative",
TRUE ~ "zero")
)
ggplot(cov_dat, aes(x = x, y = y)) +
geom_point(size = 2) +
labs(x="x", y="y") +
theme_bw() +
ggtitle(paste0("Data for Computational Practice (n = ",n,")")) +
theme(plot.title = element_text(hjust = 0.5))
```
</center>
### Summary
::: {.callout-tip icon=false title="Check Your Understanding"}
Working with your partner, prepare to explain the following concepts to the class:
- Variance
- Standard deviation
- Correlation
- Covariance
:::
## Computations in R (5 min)
Use these commands to load the data from the previous activity into R.
```{r}
#| echo: false
x <- mvn_data_6$x
y <- mvn_data_6$y
cat("x <- c(", paste(mvn_data_6$x, collapse = ", "),")")
cat("y <- c(", paste(mvn_data_6$y, collapse = ", "),")")
```
We can use R to compute the mean, variance, standard deviation, correlation coefficient, and covariance.
#### Mean, $\bar x$
```{r}
mean(x)
```
#### Variance, $s_x^2$
```{r}
var(x)
```
#### Standard Deviation, $s_x$
```{r}
sd(x)
```
#### Correlation Coefficient, $r$
```{r}
cor(x, y)
```
#### Covariance, $\\cov(x,y)$
```{r}
cov(x, y)
```
## Homework Preview (5 min)
- Review upcoming homework assignment
- Clarify questions
## Homework
::: {.callout-note icon=false}
## Download Homework
<a href="https://byuistats.github.io/timeseries/homework/homework_2_1.qmd" download="homework_2_1.qmd"> homework_2_1.qmd </a>
:::
<a href="javascript:showhide('Solutions')"
style="font-size:.8em;">Class Activity: Variance and Standard Deviation</a>
::: {#Solutions style="display:none;"}
<a href="https://github.com/TBrost/BYUI-Timeseries-Drafts/raw/master/handouts/chapter_2_1_handout_key.xlsx" download="chapter_2_1_handout_key.xlsx"> Tables-Handout-Excel-key </a>
Solutions to Class Activity: Variance and Standard Deviation
```{r}
#| echo: false
temp <- sim_data |>
mutate(
xx = x - mean(x),
xx2 = (x - mean(x))^2,
)
temp2 <- temp |>
bind_rows(colSums(temp)) |>
round_df(5) |>
mutate(Solution = ifelse(row_number() == n(), "Sum", "")) |>
dplyr::select(Solution, x, xx, xx2) |>
data.frame()
ssx <- temp2[nrow(temp2), ncol(temp2)]
temp2 |>
rename(
"$$x_t$$" = x,
"$$x_t-\\bar x$$" = xx,
"$$(x_t-\\bar x)^2$$" = xx2
) |>
display_table()
```
```{r}
```
The variance of these values is $s^2 = \frac{`r ssx`}{`r nrow(temp)` - 1} = `r var(x)`$.
The standard deviation is $s = \sqrt{s^2} = \sqrt{`r var(x)`} = `r sd(x) |> round(3)`$.
:::
<a href="javascript:showhide('Solutions2')"
style="font-size:.8em;">Team Activity: Computational Practice</a>
::: {#Solutions2 style="display:none;"}
Solutions to Team Activity: Computational Practice
#### Table 3: Computational Practice
```{r}
#| echo: false
cov_dat <- mvn_data_6 |>
mutate(t = row_number()) |>
dplyr::select(t, x, y) |>
mutate(
xx = x - mean(x),
xx2 = xx^2,
yy = y - mean(y),
yy2 = yy^2,
xy = (x - mean(x)) * (y - mean(y))
)
cov_dat_summary <- cov_dat |>
summarize(
x = sum(x),
y = sum(y),
xx = sum(xx),
xx2 = sum(xx2),
yy = sum(yy),
yy2 = sum(yy2),
xy = sum(xy)
) |>
round_df(5) |>
mutate(across(everything(), as.character)) |>
mutate(t = "sum")
temp <- cov_dat |>
round_df(5) |>
mutate(across(everything(), as.character)) |>
bind_rows(cov_dat_summary)
temp |>
# blank_out_cells_in_df(ncols_to_keep = 3, nrows_to_keep = 1) |>
# bind_rows(temp |> tail(1) |> blank_out_cells_in_df(ncols_to_keep = 0, nrows_to_keep = 0) |> mutate(t = "$$~$$")) |>
rename(
"$$t$$" = t,
"$$x_t$$" = x,
"$$y_t$$" = y,
"$$x_t-\\bar x$$" = xx,
"$$(x_t - \\bar x)^2$$" = xx2,
"$$y_t-\\bar y$$" = yy,
"$$(y_t-\\bar y)^2$$" = yy2,
"$$(x_t - \\bar x)(y_t-\\bar y)$$" = xy
) |>
display_table()
```
::: columns
::: {.column width="30%"}
- $\bar x = `r mean(mvn_data_6$x)`$
- $\bar y = `r mean(mvn_data_6$y)`$
:::
::: {.column width="5%"}
<!-- empty column to create gap -->
:::
::: {.column width="30%"}
- $s_x = `r sd(mvn_data_6$x)`$
- $s_y = `r sd(mvn_data_6$y)`$
:::
::: {.column width="5%"}
<!-- empty column to create gap -->
:::
::: {.column width="30%"}
- $r = `r cor(mvn_data_6$x, mvn_data_6$y)`$
- $\\cov(x,y) = `r cov(mvn_data_6$x, mvn_data_6$y)`$
:::
:::
:::