forked from pumpikano/tf-dann
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutils.py
91 lines (67 loc) · 2.58 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import ImageGrid
# Model construction utilities below adapted from
# https://www.tensorflow.org/versions/r0.8/tutorials/mnist/pros/index.html#deep-mnist-for-experts
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')
def shuffle_aligned_list(data):
"""Shuffle arrays in a list by shuffling each array identically."""
num = data[0].shape[0]
p = np.random.permutation(num)
return [d[p] for d in data]
def batch_generator(data, batch_size, shuffle=True):
"""Generate batches of data.
Given a list of array-like objects, generate batches of a given
size by yielding a list of array-like objects corresponding to the
same slice of each input.
"""
if shuffle:
data = shuffle_aligned_list(data)
batch_count = 0
while True:
if batch_count * batch_size + batch_size >= len(data[0]):
batch_count = 0
if shuffle:
data = shuffle_aligned_list(data)
start = batch_count * batch_size
end = start + batch_size
batch_count += 1
yield [d[start:end] for d in data]
def imshow_grid(images, shape=[2, 8]):
"""Plot images in a grid of a given shape."""
fig = plt.figure(1)
grid = ImageGrid(fig, 111, nrows_ncols=shape, axes_pad=0.05)
size = shape[0] * shape[1]
for i in range(size):
grid[i].axis('off')
grid[i].imshow(images[i]) # The AxesGrid object work as a list of axes.
plt.show()
def plot_embedding(X, y, d, title=None):
"""Plot an embedding X with the class label y colored by the domain d."""
x_min, x_max = np.min(X, 0), np.max(X, 0)
X = (X - x_min) / (x_max - x_min)
# Plot colors numbers
plt.figure(figsize=(10,10))
ax = plt.subplot(111)
for i in range(X.shape[0]):
# plot colored number
plt.text(X[i, 0], X[i, 1], str(y[i]),
color=plt.cm.bwr(d[i] / 1.),
fontdict={'weight': 'bold', 'size': 9})
plt.xticks([]), plt.yticks([])
if title is not None:
plt.title(title)