-
Notifications
You must be signed in to change notification settings - Fork 188
/
flow_inference.py
142 lines (115 loc) · 6.35 KB
/
flow_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import torch
import torchaudio
import numpy as np
import re
from hyperpyyaml import load_hyperpyyaml
import uuid
from collections import defaultdict
def fade_in_out(fade_in_mel, fade_out_mel, window):
device = fade_in_mel.device
fade_in_mel, fade_out_mel = fade_in_mel.cpu(), fade_out_mel.cpu()
mel_overlap_len = int(window.shape[0] / 2)
fade_in_mel[..., :mel_overlap_len] = fade_in_mel[..., :mel_overlap_len] * window[:mel_overlap_len] + \
fade_out_mel[..., -mel_overlap_len:] * window[mel_overlap_len:]
return fade_in_mel.to(device)
class AudioDecoder:
def __init__(self, config_path, flow_ckpt_path, hift_ckpt_path, device="cuda"):
self.device = device
with open(config_path, 'r') as f:
self.scratch_configs = load_hyperpyyaml(f)
# Load models
self.flow = self.scratch_configs['flow']
self.flow.load_state_dict(torch.load(flow_ckpt_path, map_location=self.device))
self.hift = self.scratch_configs['hift']
self.hift.load_state_dict(torch.load(hift_ckpt_path, map_location=self.device))
# Move models to the appropriate device
self.flow.to(self.device)
self.hift.to(self.device)
self.mel_overlap_dict = defaultdict(lambda: None)
self.hift_cache_dict = defaultdict(lambda: None)
self.token_min_hop_len = 2 * self.flow.input_frame_rate
self.token_max_hop_len = 4 * self.flow.input_frame_rate
self.token_overlap_len = 5
self.mel_overlap_len = int(self.token_overlap_len / self.flow.input_frame_rate * 22050 / 256)
self.mel_window = np.hamming(2 * self.mel_overlap_len)
# hift cache
self.mel_cache_len = 1
self.source_cache_len = int(self.mel_cache_len * 256)
# speech fade in out
self.speech_window = np.hamming(2 * self.source_cache_len)
def token2wav(self, token, uuid, prompt_token=torch.zeros(1, 0, dtype=torch.int32),
prompt_feat=torch.zeros(1, 0, 80), embedding=torch.zeros(1, 192), finalize=False):
tts_mel = self.flow.inference(token=token.to(self.device),
token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
prompt_token=prompt_token.to(self.device),
prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(
self.device),
prompt_feat=prompt_feat.to(self.device),
prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(
self.device),
embedding=embedding.to(self.device))
# mel overlap fade in out
if self.mel_overlap_dict[uuid] is not None:
tts_mel = fade_in_out(tts_mel, self.mel_overlap_dict[uuid], self.mel_window)
# append hift cache
if self.hift_cache_dict[uuid] is not None:
hift_cache_mel, hift_cache_source = self.hift_cache_dict[uuid]['mel'], self.hift_cache_dict[uuid]['source']
tts_mel = torch.concat([hift_cache_mel, tts_mel], dim=2)
else:
hift_cache_source = torch.zeros(1, 1, 0)
# _tts_mel=tts_mel.contiguous()
# keep overlap mel and hift cache
if finalize is False:
self.mel_overlap_dict[uuid] = tts_mel[:, :, -self.mel_overlap_len:]
tts_mel = tts_mel[:, :, :-self.mel_overlap_len]
tts_speech, tts_source = self.hift.inference(mel=tts_mel, cache_source=hift_cache_source)
self.hift_cache_dict[uuid] = {'mel': tts_mel[:, :, -self.mel_cache_len:],
'source': tts_source[:, :, -self.source_cache_len:],
'speech': tts_speech[:, -self.source_cache_len:]}
# if self.hift_cache_dict[uuid] is not None:
# tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
tts_speech = tts_speech[:, :-self.source_cache_len]
else:
tts_speech, tts_source = self.hift.inference(mel=tts_mel, cache_source=hift_cache_source)
del self.hift_cache_dict[uuid]
del self.mel_overlap_dict[uuid]
# if uuid in self.hift_cache_dict.keys() and self.hift_cache_dict[uuid] is not None:
# tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
return tts_speech, tts_mel
def offline_inference(self, token):
this_uuid = str(uuid.uuid1())
tts_speech, tts_mel = self.token2wav(token, uuid=this_uuid, finalize=True)
return tts_speech.cpu()
def stream_inference(self, token):
token.to(self.device)
this_uuid = str(uuid.uuid1())
# Prepare other necessary input tensors
llm_embedding = torch.zeros(1, 192).to(self.device)
prompt_speech_feat = torch.zeros(1, 0, 80).to(self.device)
flow_prompt_speech_token = torch.zeros(1, 0, dtype=torch.int32).to(self.device)
tts_speechs = []
tts_mels = []
block_size = self.flow.encoder.block_size
prev_mel = None
for idx in range(0, token.size(1), block_size):
# if idx>block_size: break
tts_token = token[:, idx:idx + block_size]
print(tts_token.size())
if prev_mel is not None:
prompt_speech_feat = torch.cat(tts_mels, dim=-1).transpose(1, 2)
flow_prompt_speech_token = token[:, :idx]
if idx + block_size >= token.size(-1):
is_finalize = True
else:
is_finalize = False
tts_speech, tts_mel = self.token2wav(tts_token, uuid=this_uuid,
prompt_token=flow_prompt_speech_token.to(self.device),
prompt_feat=prompt_speech_feat.to(self.device), finalize=is_finalize)
prev_mel = tts_mel
prev_speech = tts_speech
print(tts_mel.size())
tts_speechs.append(tts_speech)
tts_mels.append(tts_mel)
# Convert Mel spectrogram to audio using HiFi-GAN
tts_speech = torch.cat(tts_speechs, dim=-1).cpu()
return tts_speech.cpu()