-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRazor_AHRS.ino
849 lines (740 loc) · 32.2 KB
/
Razor_AHRS.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
/***************************************************************************************************************
* Razor AHRS Firmware v1.4.2.2
* 9 Degree of Measurement Attitude and Heading Reference System
* for Sparkfun "9DOF Razor IMU" (SEN-10125 and SEN-10736)
* and "9DOF Sensor Stick" (SEN-10183, 10321 and SEN-10724)
*
* Released under GNU GPL (General Public License) v3.0
* Copyright (C) 2013 Peter Bartz [http://ptrbrtz.net]
* Copyright (C) 2011-2012 Quality & Usability Lab, Deutsche Telekom Laboratories, TU Berlin
*
* Infos, updates, bug reports, contributions and feedback:
* https://github.com/ptrbrtz/razor-9dof-ahrs
*
*
* History:
* * Original code (http://code.google.com/p/sf9domahrs/) by Doug Weibel and Jose Julio,
* based on ArduIMU v1.5 by Jordi Munoz and William Premerlani, Jose Julio and Doug Weibel. Thank you!
*
* * Updated code (http://groups.google.com/group/sf_9dof_ahrs_update) by David Malik ([email protected])
* for new Sparkfun 9DOF Razor hardware (SEN-10125).
*
* * Updated and extended by Peter Bartz ([email protected]):
* * v1.3.0
* * Cleaned up, streamlined and restructured most of the code to make it more comprehensible.
* * Added sensor calibration (improves precision and responsiveness a lot!).
* * Added binary yaw/pitch/roll output.
* * Added basic serial command interface to set output modes/calibrate sensors/synch stream/etc.
* * Added support to synch automatically when using Rovering Networks Bluetooth modules (and compatible).
* * Wrote new easier to use test program (using Processing).
* * Added support for new version of "9DOF Razor IMU": SEN-10736.
* --> The output of this code is not compatible with the older versions!
* --> A Processing sketch to test the tracker is available.
* * v1.3.1
* * Initializing rotation matrix based on start-up sensor readings -> orientation OK right away.
* * Adjusted gyro low-pass filter and output rate settings.
* * v1.3.2
* * Adapted code to work with new Arduino 1.0 (and older versions still).
* * v1.3.3
* * Improved synching.
* * v1.4.0
* * Added support for SparkFun "9DOF Sensor Stick" (versions SEN-10183, SEN-10321 and SEN-10724).
* * v1.4.1
* * Added output modes to read raw and/or calibrated sensor data in text or binary format.
* * Added static magnetometer soft iron distortion compensation
* * v1.4.2
* * (No core firmware changes)
* * v1.4.2.1
* * New output mode to support ROS Imu use emits YPR + accel + rot. vel.
* * v1.4.2.2
* * New input mode to set calibration parameters
*
* TODOs:
* * Allow optional use of EEPROM for storing and reading calibration values.
* * Use self-test and temperature-compensation features of the sensors.
***************************************************************************************************************/
/*
"9DOF Razor IMU" hardware versions: SEN-10125 and SEN-10736
[email protected], 8MHz
ADXL345 : Accelerometer
HMC5843 : Magnetometer on SEN-10125
HMC5883L : Magnetometer on SEN-10736
ITG-3200 : Gyro
Arduino IDE : Select board "Arduino Pro or Pro Mini (3.3v, 8Mhz) w/ATmega328"
*/
/*
"9DOF Sensor Stick" hardware versions: SEN-10183, SEN-10321 and SEN-10724
ADXL345 : Accelerometer
HMC5843 : Magnetometer on SEN-10183 and SEN-10321
HMC5883L : Magnetometer on SEN-10724
ITG-3200 : Gyro
*/
/*
Axis definition (differs from definition printed on the board!):
X axis pointing forward (towards the short edge with the connector holes)
Y axis pointing to the right
and Z axis pointing down.
Positive yaw : clockwise
Positive roll : right wing down
Positive pitch : nose up
Transformation order: first yaw then pitch then roll.
*/
/*
Serial commands that the firmware understands:
"#c<params>" - SET _c_alibration parameters. The available options are:
[a|m|g|c|t] _a_ccelerometer, _m_agnetometer, _g_yro, magnetometerellipsoid_c_enter, magnetometerellipsoid_t_ransform
[x|y|z] x,y or z
[m|M|X|Y|Z] _m_in or _M_ax (accel or magnetometer), X, Y, or Z of transform (magnetometerellipsoid_t_ransform)
"#p" - PRINT current calibration values
"#o<params>" - Set OUTPUT mode and parameters. The available options are:
// Streaming output
"#o0" - DISABLE continuous streaming output. Also see #f below.
"#o1" - ENABLE continuous streaming output.
// Angles output
"#ob" - Output angles in BINARY format (yaw/pitch/roll as binary float, so one output frame
is 3x4 = 12 bytes long).
"#ot" - Output angles in TEXT format (Output frames have form like "#YPR=-142.28,-5.38,33.52",
followed by carriage return and line feed [\r\n]).
"#ox" - Output angles and linear acceleration and rotational
velocity. Angles are in degrees, acceleration is
in units of 1.0 = 1/256 G (9.8/256 m/s^2). Rotational
velocity is in rad/s^2. (Output frames have form like
"#YPRAG=-142.28,-5.38,33.52,0.1,0.1,1.0,0.01,0.01,0.01",
followed by carriage return and line feed [\r\n]).
// Sensor calibration
"#oc" - Go to CALIBRATION output mode.
"#on" - When in calibration mode, go on to calibrate NEXT sensor.
// Sensor data output
"#osct" - Output CALIBRATED SENSOR data of all 9 axes in TEXT format.
One frame consist of three lines - one for each sensor: acc, mag, gyr.
"#osrt" - Output RAW SENSOR data of all 9 axes in TEXT format.
One frame consist of three lines - one for each sensor: acc, mag, gyr.
"#osbt" - Output BOTH raw and calibrated SENSOR data of all 9 axes in TEXT format.
One frame consist of six lines - like #osrt and #osct combined (first RAW, then CALIBRATED).
NOTE: This is a lot of number-to-text conversion work for the little 8MHz chip on the Razor boards.
In fact it's too much and an output frame rate of 50Hz can not be maintained. #osbb.
"#oscb" - Output CALIBRATED SENSOR data of all 9 axes in BINARY format.
One frame consist of three 3x3 float values = 36 bytes. Order is: acc x/y/z, mag x/y/z, gyr x/y/z.
"#osrb" - Output RAW SENSOR data of all 9 axes in BINARY format.
One frame consist of three 3x3 float values = 36 bytes. Order is: acc x/y/z, mag x/y/z, gyr x/y/z.
"#osbb" - Output BOTH raw and calibrated SENSOR data of all 9 axes in BINARY format.
One frame consist of 2x36 = 72 bytes - like #osrb and #oscb combined (first RAW, then CALIBRATED).
// Error message output
"#oe0" - Disable ERROR message output.
"#oe1" - Enable ERROR message output.
"#f" - Request one output frame - useful when continuous output is disabled and updates are
required in larger intervals only. Though #f only requests one reply, replies are still
bound to the internal 20ms (50Hz) time raster. So worst case delay that #f can add is 19.99ms.
"#s<xy>" - Request synch token - useful to find out where the frame boundaries are in a continuous
binary stream or to see if tracker is present and answering. The tracker will send
"#SYNCH<xy>\r\n" in response (so it's possible to read using a readLine() function).
x and y are two mandatory but arbitrary bytes that can be used to find out which request
the answer belongs to.
("#C" and "#D" - Reserved for communication with optional Bluetooth module.)
Newline characters are not required. So you could send "#ob#o1#s", which
would set binary output mode, enable continuous streaming output and request
a synch token all at once.
The status LED will be on if streaming output is enabled and off otherwise.
Byte order of binary output is little-endian: least significant byte comes first.
*/
/*****************************************************************/
/*********** USER SETUP AREA! Set your options here! *************/
/*****************************************************************/
// HARDWARE OPTIONS
/*****************************************************************/
// Select your hardware here by uncommenting one line!
//#define HW__VERSION_CODE 10125 // SparkFun "9DOF Razor IMU" version "SEN-10125" (HMC5843 magnetometer)
#define HW__VERSION_CODE 10736 // SparkFun "9DOF Razor IMU" version "SEN-10736" (HMC5883L magnetometer)
//#define HW__VERSION_CODE 10183 // SparkFun "9DOF Sensor Stick" version "SEN-10183" (HMC5843 magnetometer)
//#define HW__VERSION_CODE 10321 // SparkFun "9DOF Sensor Stick" version "SEN-10321" (HMC5843 magnetometer)
//#define HW__VERSION_CODE 10724 // SparkFun "9DOF Sensor Stick" version "SEN-10724" (HMC5883L magnetometer)
// OUTPUT OPTIONS
/*****************************************************************/
// Set your serial port baud rate used to send out data here!
#define OUTPUT__BAUD_RATE 57600
// Sensor data output interval in milliseconds
// This may not work, if faster than 20ms (=50Hz)
// Code is tuned for 20ms, so better leave it like that
#define OUTPUT__DATA_INTERVAL 20 // in milliseconds
// Output mode definitions (do not change)
#define OUTPUT__MODE_CALIBRATE_SENSORS 0 // Outputs sensor min/max values as text for manual calibration
#define OUTPUT__MODE_ANGLES 1 // Outputs yaw/pitch/roll in degrees
#define OUTPUT__MODE_SENSORS_CALIB 2 // Outputs calibrated sensor values for all 9 axes
#define OUTPUT__MODE_SENSORS_RAW 3 // Outputs raw (uncalibrated) sensor values for all 9 axes
#define OUTPUT__MODE_SENSORS_BOTH 4 // Outputs calibrated AND raw sensor values for all 9 axes
#define OUTPUT__MODE_ANGLES_AG_SENSORS 5 // Outputs yaw/pitch/roll in degrees + linear accel + rot. vel
// Output format definitions (do not change)
#define OUTPUT__FORMAT_TEXT 0 // Outputs data as text
#define OUTPUT__FORMAT_BINARY 1 // Outputs data as binary float
// Select your startup output mode and format here!
int output_mode = OUTPUT__MODE_ANGLES;
int output_format = OUTPUT__FORMAT_TEXT;
// Select if serial continuous streaming output is enabled per default on startup.
#define OUTPUT__STARTUP_STREAM_ON false // true or false
// If set true, an error message will be output if we fail to read sensor data.
// Message format: "!ERR: reading <sensor>", followed by "\r\n".
boolean output_errors = false; // true or false
// Bluetooth
// You can set this to true, if you have a Rovering Networks Bluetooth Module attached.
// The connect/disconnect message prefix of the module has to be set to "#".
// (Refer to manual, it can be set like this: SO,#)
// When using this, streaming output will only be enabled as long as we're connected. That way
// receiver and sender are synchronzed easily just by connecting/disconnecting.
// It is not necessary to set this! It just makes life easier when writing code for
// the receiving side. The Processing test sketch also works without setting this.
// NOTE: When using this, OUTPUT__STARTUP_STREAM_ON has no effect!
#define OUTPUT__HAS_RN_BLUETOOTH false // true or false
// SENSOR CALIBRATION
/*****************************************************************/
// How to calibrate? Read the tutorial at http://dev.qu.tu-berlin.de/projects/sf-razor-9dof-ahrs
// Put MIN/MAX and OFFSET readings for your board here!
// Accelerometer
// "accel x,y,z (min/max) = X_MIN/X_MAX Y_MIN/Y_MAX Z_MIN/Z_MAX"
float ACCEL_X_MIN = -268;
float ACCEL_X_MAX = 250;
float ACCEL_Y_MIN = -261;
float ACCEL_Y_MAX = 268;
float ACCEL_Z_MIN = -279;
float ACCEL_Z_MAX = 233;
// Magnetometer (standard calibration mode)
// "magn x,y,z (min/max) = X_MIN/X_MAX Y_MIN/Y_MAX Z_MIN/Z_MAX"
float MAGN_X_MIN = -600;
float MAGN_X_MAX = 600;
float MAGN_Y_MIN = -600;
float MAGN_Y_MAX = 600;
float MAGN_Z_MIN = -600;
float MAGN_Z_MAX = 600;
// Magnetometer (extended calibration mode)
// Set to true to use extended magnetometer calibration (compensates hard & soft iron errors)
boolean CALIBRATION__MAGN_USE_EXTENDED = false;
float magn_ellipsoid_center[3] = {0, 0, 0};
float magn_ellipsoid_transform[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
// Gyroscope
// "gyro x,y,z (current/average) = .../OFFSET_X .../OFFSET_Y .../OFFSET_Z
float GYRO_AVERAGE_OFFSET_X = 16.04;
float GYRO_AVERAGE_OFFSET_Y = -9.01;
float GYRO_AVERAGE_OFFSET_Z = -0.79;
// DEBUG OPTIONS
/*****************************************************************/
// When set to true, gyro drift correction will not be applied
#define DEBUG__NO_DRIFT_CORRECTION false
// Print elapsed time after each I/O loop
#define DEBUG__PRINT_LOOP_TIME false
/*****************************************************************/
/****************** END OF USER SETUP AREA! *********************/
/*****************************************************************/
// Check if hardware version code is defined
#ifndef HW__VERSION_CODE
// Generate compile error
#error YOU HAVE TO SELECT THE HARDWARE YOU ARE USING! See "HARDWARE OPTIONS" in "USER SETUP AREA" at top of Razor_AHRS.ino!
#endif
#include <Wire.h>
#define GRAVITY 256.0f // "1G reference" used for DCM filter and accelerometer calibration
// Sensor calibration scale and offset values
float ACCEL_X_OFFSET = ((ACCEL_X_MIN + ACCEL_X_MAX) / 2.0f);
float ACCEL_Y_OFFSET = ((ACCEL_Y_MIN + ACCEL_Y_MAX) / 2.0f);
float ACCEL_Z_OFFSET = ((ACCEL_Z_MIN + ACCEL_Z_MAX) / 2.0f);
float ACCEL_X_SCALE = (GRAVITY / (ACCEL_X_MAX - ACCEL_X_OFFSET));
float ACCEL_Y_SCALE = (GRAVITY / (ACCEL_Y_MAX - ACCEL_Y_OFFSET));
float ACCEL_Z_SCALE = (GRAVITY / (ACCEL_Z_MAX - ACCEL_Z_OFFSET));
float MAGN_X_OFFSET = ((MAGN_X_MIN + MAGN_X_MAX) / 2.0f);
float MAGN_Y_OFFSET = ((MAGN_Y_MIN + MAGN_Y_MAX) / 2.0f);
float MAGN_Z_OFFSET = ((MAGN_Z_MIN + MAGN_Z_MAX) / 2.0f);
float MAGN_X_SCALE = (100.0f / (MAGN_X_MAX - MAGN_X_OFFSET));
float MAGN_Y_SCALE = (100.0f / (MAGN_Y_MAX - MAGN_Y_OFFSET));
float MAGN_Z_SCALE = (100.0f / (MAGN_Z_MAX - MAGN_Z_OFFSET));
// Gain for gyroscope (ITG-3200)
#define GYRO_GAIN 0.06957 // Same gain on all axes
#define GYRO_SCALED_RAD(x) (x * TO_RAD(GYRO_GAIN)) // Calculate the scaled gyro readings in radians per second
// DCM parameters
#define Kp_ROLLPITCH 0.02f
#define Ki_ROLLPITCH 0.00002f
#define Kp_YAW 1.2f
#define Ki_YAW 0.00002f
// Stuff
#define STATUS_LED_PIN 13 // Pin number of status LED
#define TO_RAD(x) (x * 0.01745329252) // *pi/180
#define TO_DEG(x) (x * 57.2957795131) // *180/pi
// Sensor variables
float accel[3]; // Actually stores the NEGATED acceleration (equals gravity, if board not moving).
float accel_min[3];
float accel_max[3];
float magnetom[3];
float magnetom_min[3];
float magnetom_max[3];
float magnetom_tmp[3];
float gyro[3];
float gyro_average[3];
int gyro_num_samples = 0;
// DCM variables
float MAG_Heading;
float Accel_Vector[3]= {0, 0, 0}; // Store the acceleration in a vector
float Gyro_Vector[3]= {0, 0, 0}; // Store the gyros turn rate in a vector
float Omega_Vector[3]= {0, 0, 0}; // Corrected Gyro_Vector data
float Omega_P[3]= {0, 0, 0}; // Omega Proportional correction
float Omega_I[3]= {0, 0, 0}; // Omega Integrator
float Omega[3]= {0, 0, 0};
float errorRollPitch[3] = {0, 0, 0};
float errorYaw[3] = {0, 0, 0};
float DCM_Matrix[3][3] = {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}};
float Update_Matrix[3][3] = {{0, 1, 2}, {3, 4, 5}, {6, 7, 8}};
float Temporary_Matrix[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
// Euler angles
float yaw;
float pitch;
float roll;
// DCM timing in the main loop
unsigned long timestamp;
unsigned long timestamp_old;
float G_Dt; // Integration time for DCM algorithm
// More output-state variables
boolean output_stream_on;
boolean output_single_on;
int curr_calibration_sensor = 0;
boolean reset_calibration_session_flag = true;
int num_accel_errors = 0;
int num_magn_errors = 0;
int num_gyro_errors = 0;
void read_sensors() {
Read_Gyro(); // Read gyroscope
Read_Accel(); // Read accelerometer
Read_Magn(); // Read magnetometer
}
//should be called after every #ca calibration command
void recalculateAccelCalibration(){
ACCEL_X_OFFSET = ((ACCEL_X_MIN + ACCEL_X_MAX) / 2.0f);
ACCEL_Y_OFFSET = ((ACCEL_Y_MIN + ACCEL_Y_MAX) / 2.0f);
ACCEL_Z_OFFSET = ((ACCEL_Z_MIN + ACCEL_Z_MAX) / 2.0f);
ACCEL_X_SCALE = (GRAVITY / (ACCEL_X_MAX - ACCEL_X_OFFSET));
ACCEL_Y_SCALE = (GRAVITY / (ACCEL_Y_MAX - ACCEL_Y_OFFSET));
ACCEL_Z_SCALE = (GRAVITY / (ACCEL_Z_MAX - ACCEL_Z_OFFSET));
}
//should be called after every #cm calibration command
void recalculateMagnCalibration(){
MAGN_X_OFFSET = ((MAGN_X_MIN + MAGN_X_MAX) / 2.0f);
MAGN_Y_OFFSET = ((MAGN_Y_MIN + MAGN_Y_MAX) / 2.0f);
MAGN_Z_OFFSET = ((MAGN_Z_MIN + MAGN_Z_MAX) / 2.0f);
MAGN_X_SCALE = (100.0f / (MAGN_X_MAX - MAGN_X_OFFSET));
MAGN_Y_SCALE = (100.0f / (MAGN_Y_MAX - MAGN_Y_OFFSET));
MAGN_Z_SCALE = (100.0f / (MAGN_Z_MAX - MAGN_Z_OFFSET));
}
// Read every sensor and record a time stamp
// Init DCM with unfiltered orientation
// TODO re-init global vars?
void reset_sensor_fusion() {
float temp1[3];
float temp2[3];
float xAxis[] = {1.0f, 0.0f, 0.0f};
read_sensors();
timestamp = millis();
// GET PITCH
// Using y-z-plane-component/x-component of gravity vector
pitch = -atan2(accel[0], sqrt(accel[1] * accel[1] + accel[2] * accel[2]));
// GET ROLL
// Compensate pitch of gravity vector
Vector_Cross_Product(temp1, accel, xAxis);
Vector_Cross_Product(temp2, xAxis, temp1);
// Normally using x-z-plane-component/y-component of compensated gravity vector
// roll = atan2(temp2[1], sqrt(temp2[0] * temp2[0] + temp2[2] * temp2[2]));
// Since we compensated for pitch, x-z-plane-component equals z-component:
roll = atan2(temp2[1], temp2[2]);
// GET YAW
Compass_Heading();
yaw = MAG_Heading;
// Init rotation matrix
init_rotation_matrix(DCM_Matrix, yaw, pitch, roll);
}
// Apply calibration to raw sensor readings
void compensate_sensor_errors() {
// Compensate accelerometer error
accel[0] = (accel[0] - ACCEL_X_OFFSET) * ACCEL_X_SCALE;
accel[1] = (accel[1] - ACCEL_Y_OFFSET) * ACCEL_Y_SCALE;
accel[2] = (accel[2] - ACCEL_Z_OFFSET) * ACCEL_Z_SCALE;
// Compensate magnetometer error
if (CALIBRATION__MAGN_USE_EXTENDED){
for (int i = 0; i < 3; i++)
magnetom_tmp[i] = magnetom[i] - magn_ellipsoid_center[i];
Matrix_Vector_Multiply(magn_ellipsoid_transform, magnetom_tmp, magnetom);
}else{
magnetom[0] = (magnetom[0] - MAGN_X_OFFSET) * MAGN_X_SCALE;
magnetom[1] = (magnetom[1] - MAGN_Y_OFFSET) * MAGN_Y_SCALE;
magnetom[2] = (magnetom[2] - MAGN_Z_OFFSET) * MAGN_Z_SCALE;
}
// Compensate gyroscope error
gyro[0] -= GYRO_AVERAGE_OFFSET_X;
gyro[1] -= GYRO_AVERAGE_OFFSET_Y;
gyro[2] -= GYRO_AVERAGE_OFFSET_Z;
}
// Reset calibration session if reset_calibration_session_flag is set
void check_reset_calibration_session()
{
// Raw sensor values have to be read already, but no error compensation applied
// Reset this calibration session?
if (!reset_calibration_session_flag) return;
// Reset acc and mag calibration variables
for (int i = 0; i < 3; i++) {
accel_min[i] = accel_max[i] = accel[i];
magnetom_min[i] = magnetom_max[i] = magnetom[i];
}
// Reset gyro calibration variables
gyro_num_samples = 0; // Reset gyro calibration averaging
gyro_average[0] = gyro_average[1] = gyro_average[2] = 0.0f;
reset_calibration_session_flag = false;
}
void turn_output_stream_on()
{
output_stream_on = true;
digitalWrite(STATUS_LED_PIN, HIGH);
}
void turn_output_stream_off()
{
output_stream_on = false;
digitalWrite(STATUS_LED_PIN, LOW);
}
// Blocks until another byte is available on serial port
char readChar()
{
while (Serial.available() < 1) { } // Block
return Serial.read();
}
void setup()
{
// Init serial output
Serial.begin(OUTPUT__BAUD_RATE);
// Init status LED
pinMode (STATUS_LED_PIN, OUTPUT);
digitalWrite(STATUS_LED_PIN, LOW);
// Init sensors
delay(50); // Give sensors enough time to start
I2C_Init();
Accel_Init();
Magn_Init();
Gyro_Init();
// Read sensors, init DCM algorithm
delay(20); // Give sensors enough time to collect data
reset_sensor_fusion();
// Init output
#if (OUTPUT__HAS_RN_BLUETOOTH == true) || (OUTPUT__STARTUP_STREAM_ON == false)
turn_output_stream_off();
#else
turn_output_stream_on();
#endif
}
// Main loop
void loop()
{
// Read incoming control messages
if (Serial.available() >= 2)
{
if (Serial.read() == '#') // Start of new control message
{
int command = Serial.read(); // Commands
if (command == 'f') // request one output _f_rame
output_single_on = true;
else if (command == 's') // _s_ynch request
{
// Read ID
byte id[2];
id[0] = readChar();
id[1] = readChar();
// Reply with synch message
Serial.print("#SYNCH");
Serial.write(id, 2);
Serial.println();
}
else if (command == 'o') // Set _o_utput mode
{
char output_param = readChar();
if (output_param == 'n') // Calibrate _n_ext sensor
{
curr_calibration_sensor = (curr_calibration_sensor + 1) % 3;
reset_calibration_session_flag = true;
}
else if (output_param == 't') // Output angles as _t_ext
{
output_mode = OUTPUT__MODE_ANGLES;
output_format = OUTPUT__FORMAT_TEXT;
}
else if (output_param == 'b') // Output angles in _b_inary format
{
output_mode = OUTPUT__MODE_ANGLES;
output_format = OUTPUT__FORMAT_BINARY;
}
else if (output_param == 'c') // Go to _c_alibration mode
{
output_mode = OUTPUT__MODE_CALIBRATE_SENSORS;
reset_calibration_session_flag = true;
}
else if (output_param == 'x') // Go to _c_alibration mode for both sensor and angle comment: Tang
{
output_mode = OUTPUT__MODE_ANGLES_AG_SENSORS;
reset_calibration_session_flag = true;
}
else if (output_param == 's') // Output _s_ensor values
{
char values_param = readChar();
char format_param = readChar();
if (values_param == 'r') // Output _r_aw sensor values
output_mode = OUTPUT__MODE_SENSORS_RAW;
else if (values_param == 'c') // Output _c_alibrated sensor values
output_mode = OUTPUT__MODE_SENSORS_CALIB;
else if (values_param == 'b') // Output _b_oth sensor values (raw and calibrated)
output_mode = OUTPUT__MODE_SENSORS_BOTH;
if (format_param == 't') // Output values as _t_text
output_format = OUTPUT__FORMAT_TEXT;
else if (format_param == 'b') // Output values in _b_inary format
output_format = OUTPUT__FORMAT_BINARY;
}
else if (output_param == '0') // Disable continuous streaming output
{
turn_output_stream_off();
reset_calibration_session_flag = true;
}
else if (output_param == '1') // Enable continuous streaming output
{
reset_calibration_session_flag = true;
turn_output_stream_on();
}
else if (output_param == 'e') // _e_rror output settings
{
char error_param = readChar();
if (error_param == '0') output_errors = false;
else if (error_param == '1') output_errors = true;
else if (error_param == 'c') // get error count
{
Serial.print("#AMG-ERR:");
Serial.print(num_accel_errors); Serial.print(",");
Serial.print(num_magn_errors); Serial.print(",");
Serial.println(num_gyro_errors);
}
}
}
else if (command == 'p') // Set _p_rint calibration values
{
Serial.print("ACCEL_X_MIN:");Serial.println(ACCEL_X_MIN);
Serial.print("ACCEL_X_MAX:");Serial.println(ACCEL_X_MAX);
Serial.print("ACCEL_Y_MIN:");Serial.println(ACCEL_Y_MIN);
Serial.print("ACCEL_Y_MAX:");Serial.println(ACCEL_Y_MAX);
Serial.print("ACCEL_Z_MIN:");Serial.println(ACCEL_Z_MIN);
Serial.print("ACCEL_Z_MAX:");Serial.println(ACCEL_Z_MAX);
Serial.println("");
Serial.print("MAGN_X_MIN:");Serial.println(MAGN_X_MIN);
Serial.print("MAGN_X_MAX:");Serial.println(MAGN_X_MAX);
Serial.print("MAGN_Y_MIN:");Serial.println(MAGN_Y_MIN);
Serial.print("MAGN_Y_MAX:");Serial.println(MAGN_Y_MAX);
Serial.print("MAGN_Z_MIN:");Serial.println(MAGN_Z_MIN);
Serial.print("MAGN_Z_MAX:");Serial.println(MAGN_Z_MAX);
Serial.println("");
Serial.print("MAGN_USE_EXTENDED:");
if (CALIBRATION__MAGN_USE_EXTENDED)
Serial.println("true");
else
Serial.println("false");
Serial.print("magn_ellipsoid_center:[");Serial.print(magn_ellipsoid_center[0],4);Serial.print(",");
Serial.print(magn_ellipsoid_center[1],4);Serial.print(",");
Serial.print(magn_ellipsoid_center[2],4);Serial.println("]");
Serial.print("magn_ellipsoid_transform:[");
for(int i = 0; i < 3; i++){
Serial.print("[");
for(int j = 0; j < 3; j++){
Serial.print(magn_ellipsoid_transform[i][j],7);
if (j < 2) Serial.print(",");
}
Serial.print("]");
if (i < 2) Serial.print(",");
}
Serial.println("]");
Serial.println("");
Serial.print("GYRO_AVERAGE_OFFSET_X:");Serial.println(GYRO_AVERAGE_OFFSET_X);
Serial.print("GYRO_AVERAGE_OFFSET_Y:");Serial.println(GYRO_AVERAGE_OFFSET_Y);
Serial.print("GYRO_AVERAGE_OFFSET_Z:");Serial.println(GYRO_AVERAGE_OFFSET_Z);
}
else if (command == 'c') // Set _i_nput mode
{
char input_param = readChar();
if (input_param == 'a') // Calibrate _a_ccelerometer
{
char axis_param = readChar();
char type_param = readChar();
float value_param = Serial.parseFloat();
if (axis_param == 'x') // x value
{
if (type_param == 'm')
ACCEL_X_MIN = value_param;
else if (type_param == 'M')
ACCEL_X_MAX = value_param;
}
else if (axis_param == 'y') // y value
{
if (type_param == 'm')
ACCEL_Y_MIN = value_param;
else if (type_param == 'M')
ACCEL_Y_MAX = value_param;
}
else if (axis_param == 'z') // z value
{
if (type_param == 'm')
ACCEL_Z_MIN = value_param;
else if (type_param == 'M')
ACCEL_Z_MAX = value_param;
}
recalculateAccelCalibration();
}
else if (input_param == 'm') // Calibrate _m_agnetometer (basic)
{
//disable extended magnetometer calibration
CALIBRATION__MAGN_USE_EXTENDED = false;
char axis_param = readChar();
char type_param = readChar();
float value_param = Serial.parseFloat();
if (axis_param == 'x') // x value
{
if (type_param == 'm')
MAGN_X_MIN = value_param;
else if (type_param == 'M')
MAGN_X_MAX = value_param;
}
else if (axis_param == 'y') // y value
{
if (type_param == 'm')
MAGN_Y_MIN = value_param;
else if (type_param == 'M')
MAGN_Y_MAX = value_param;
}
else if (axis_param == 'z') // z value
{
if (type_param == 'm')
MAGN_Z_MIN = value_param;
else if (type_param == 'M')
MAGN_Z_MAX = value_param;
}
recalculateMagnCalibration();
}
else if (input_param == 'c') // Calibrate magnetometerellipsoid_c_enter (extended)
{
//enable extended magnetometer calibration
CALIBRATION__MAGN_USE_EXTENDED = true;
char axis_param = readChar();
float value_param = Serial.parseFloat();
if (axis_param == 'x') // x value
magn_ellipsoid_center[0] = value_param;
else if (axis_param == 'y') // y value
magn_ellipsoid_center[1] = value_param;
else if (axis_param == 'z') // z value
magn_ellipsoid_center[2] = value_param;
}
else if (input_param == 't') // Calibrate magnetometerellipsoid_t_ransform (extended)
{
//enable extended magnetometer calibration
CALIBRATION__MAGN_USE_EXTENDED = true;
char axis_param = readChar();
char type_param = readChar();
float value_param = Serial.parseFloat();
if (axis_param == 'x') // x value
{
if (type_param == 'X')
magn_ellipsoid_transform[0][0] = value_param;
else if (type_param == 'Y')
magn_ellipsoid_transform[0][1] = value_param;
else if (type_param == 'Z')
magn_ellipsoid_transform[0][2] = value_param;
}
else if (axis_param == 'y') // y value
{
if (type_param == 'X')
magn_ellipsoid_transform[1][0] = value_param;
else if (type_param == 'Y')
magn_ellipsoid_transform[1][1] = value_param;
else if (type_param == 'Z')
magn_ellipsoid_transform[1][2] = value_param;
}
else if (axis_param == 'z') // z value
{
if (type_param == 'X')
magn_ellipsoid_transform[2][0] = value_param;
else if (type_param == 'Y')
magn_ellipsoid_transform[2][1] = value_param;
else if (type_param == 'Z')
magn_ellipsoid_transform[2][2] = value_param;
}
}
else if (input_param == 'g') // Calibrate _g_yro
{
char axis_param = readChar();
float value_param = Serial.parseFloat();
if (axis_param == 'x') // x value
GYRO_AVERAGE_OFFSET_X = value_param;
else if (axis_param == 'y') // y value
GYRO_AVERAGE_OFFSET_Y = value_param;
else if (axis_param == 'z') // z value
GYRO_AVERAGE_OFFSET_Z = value_param;
}
}
#if OUTPUT__HAS_RN_BLUETOOTH == true
// Read messages from bluetooth module
// For this to work, the connect/disconnect message prefix of the module has to be set to "#".
else if (command == 'C') // Bluetooth "#CONNECT" message (does the same as "#o1")
turn_output_stream_on();
else if (command == 'D') // Bluetooth "#DISCONNECT" message (does the same as "#o0")
turn_output_stream_off();
#endif // OUTPUT__HAS_RN_BLUETOOTH == true
}
else
{ } // Skip character
}
// Time to read the sensors again?
if((millis() - timestamp) >= OUTPUT__DATA_INTERVAL)
{
timestamp_old = timestamp;
timestamp = millis();
if (timestamp > timestamp_old)
G_Dt = (float) (timestamp - timestamp_old) / 1000.0f; // Real time of loop run. We use this on the DCM algorithm (gyro integration time)
else G_Dt = 0;
// Update sensor readings
read_sensors();
if (output_mode == OUTPUT__MODE_CALIBRATE_SENSORS) // We're in calibration mode
{
check_reset_calibration_session(); // Check if this session needs a reset
if (output_stream_on || output_single_on) output_calibration(curr_calibration_sensor);
}
else if (output_mode == OUTPUT__MODE_ANGLES) // Output angles
{
// Apply sensor calibration
compensate_sensor_errors();
// Run DCM algorithm
Compass_Heading(); // Calculate magnetic heading
Matrix_update();
Normalize();
Drift_correction();
Euler_angles();
if (output_stream_on || output_single_on) output_angles();
}
else if (output_mode == OUTPUT__MODE_ANGLES_AG_SENSORS) // Output angles + accel + rot. vel
{
// Apply sensor calibration
compensate_sensor_errors();
// Run DCM algorithm
Compass_Heading(); // Calculate magnetic heading
Matrix_update();
Normalize();
Drift_correction();
Euler_angles();
if (output_stream_on || output_single_on) output_both_angles_and_sensors_text();
}
else // Output sensor values
{
if (output_stream_on || output_single_on) output_sensors();
}
output_single_on = false;
#if DEBUG__PRINT_LOOP_TIME == true
Serial.print("loop time (ms) = ");
Serial.println(millis() - timestamp);
#endif
}
#if DEBUG__PRINT_LOOP_TIME == true
else
{
Serial.println("waiting...");
}
#endif
}