-
Notifications
You must be signed in to change notification settings - Fork 172
/
Copy pathtest_stage_1.py
192 lines (152 loc) · 6.47 KB
/
test_stage_1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import os,sys
import argparse
import os
import sys
from datetime import datetime
from pathlib import Path
from typing import List
import glob
import numpy as np
import torch
import torchvision
from diffusers import AutoencoderKL, DDIMScheduler
from diffusers.pipelines.stable_diffusion import StableDiffusionPipeline
from einops import repeat
from omegaconf import OmegaConf
from PIL import Image
from torchvision import transforms
from transformers import CLIPVisionModelWithProjection
from musepose.models.pose_guider import PoseGuider
from musepose.models.unet_2d_condition import UNet2DConditionModel
from musepose.models.unet_3d import UNet3DConditionModel
from musepose.pipelines.pipeline_pose2img import Pose2ImagePipeline
from musepose.utils.util import get_fps, read_frames, save_videos_grid
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--config",default="./configs/test_stage_1.yaml")
parser.add_argument("-W", type=int, default=768)
parser.add_argument("-H", type=int, default=768)
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--cnt", type=int, default=1)
parser.add_argument("--cfg", type=float, default=7)
parser.add_argument("--steps", type=int, default=20)
parser.add_argument("--fps", type=int)
args = parser.parse_args()
return args
def main():
args = parse_args()
config = OmegaConf.load(args.config)
if config.weight_dtype == "fp16":
weight_dtype = torch.float16
else:
weight_dtype = torch.float32
vae = AutoencoderKL.from_pretrained(
config.pretrained_vae_path,
).to("cuda", dtype=weight_dtype)
reference_unet = UNet2DConditionModel.from_pretrained(
config.pretrained_base_model_path,
subfolder="unet",
).to(dtype=weight_dtype, device="cuda")
inference_config_path = config.inference_config
infer_config = OmegaConf.load(inference_config_path)
denoising_unet = UNet3DConditionModel.from_pretrained_2d(
config.pretrained_base_model_path,
# config.motion_module_path,
"",
subfolder="unet",
unet_additional_kwargs={
"use_motion_module": False,
"unet_use_temporal_attention": False,
},
).to(dtype=weight_dtype, device="cuda")
pose_guider = PoseGuider(320, block_out_channels=(16, 32, 96, 256)).to(
dtype=weight_dtype, device="cuda"
)
image_enc = CLIPVisionModelWithProjection.from_pretrained(
config.image_encoder_path
).to(dtype=weight_dtype, device="cuda")
sched_kwargs = OmegaConf.to_container(infer_config.noise_scheduler_kwargs)
scheduler = DDIMScheduler(**sched_kwargs)
width, height = args.W, args.H
# load pretrained weights
denoising_unet.load_state_dict(
torch.load(config.denoising_unet_path, map_location="cpu"),
strict=False,
)
reference_unet.load_state_dict(
torch.load(config.reference_unet_path, map_location="cpu"),
)
pose_guider.load_state_dict(
torch.load(config.pose_guider_path, map_location="cpu"),
)
pipe = Pose2ImagePipeline(
vae=vae,
image_encoder=image_enc,
reference_unet=reference_unet,
denoising_unet=denoising_unet,
pose_guider=pose_guider,
scheduler=scheduler,
)
pipe = pipe.to("cuda", dtype=weight_dtype)
date_str = datetime.now().strftime("%Y%m%d")
time_str = datetime.now().strftime("%H%M")
m1 = config.pose_guider_path.split('.')[0].split('/')[-1]
save_dir_name = f"{time_str}-{m1}"
save_dir = Path(f"./output/image-{date_str}/{save_dir_name}")
save_dir.mkdir(exist_ok=True, parents=True)
def handle_single(ref_image_path, pose_path,seed):
generator = torch.manual_seed(seed)
ref_name = Path(ref_image_path).stem
# pose_name = Path(pose_image_path).stem.replace("_kps", "")
pose_name = Path(pose_path).stem
ref_image_pil = Image.open(ref_image_path).convert("RGB")
pose_image = Image.open(pose_path).convert("RGB")
original_width, original_height = pose_image.size
pose_transform = transforms.Compose(
[transforms.Resize((height, width)), transforms.ToTensor()]
)
pose_image_tensor = pose_transform(pose_image)
pose_image_tensor = pose_image_tensor.unsqueeze(0) # (1, c, h, w)
ref_image_tensor = pose_transform(ref_image_pil) # (c, h, w)
ref_image_tensor = ref_image_tensor.unsqueeze(1).unsqueeze(0) # (1, c, 1, h, w)
image = pipe(
ref_image_pil,
pose_image,
width,
height,
args.steps,
args.cfg,
generator=generator,
).images
image = image.squeeze(2).squeeze(0) # (c, h, w)
image = image.transpose(0, 1).transpose(1, 2) # (h w c)
#image = (image + 1.0) / 2.0 # -1,1 -> 0,1
image = (image * 255).numpy().astype(np.uint8)
image = Image.fromarray(image, 'RGB')
# image.save(os.path.join(save_dir, f"{ref_name}_{pose_name}_{args.H}x{args.W}_{int(args.cfg)}_{time_str}.png"))
image_grid = Image.new('RGB',(original_width*3,original_height))
imgs = [ref_image_pil,pose_image,image]
x_offset = 0
for img in imgs:
img = img.resize((original_width*2, original_height*2))
img.save(os.path.join(save_dir, f"res_{ref_name}_{pose_name}_{args.cfg}_{seed}.jpg"))
img = img.resize((original_width,original_height))
image_grid.paste(img, (x_offset,0))
x_offset += img.size[0]
image_grid.save(os.path.join(save_dir, f"grid_{ref_name}_{pose_name}_{args.cfg}_{seed}.jpg"))
for ref_image_path_dir in config["test_cases"].keys():
if os.path.isdir(ref_image_path_dir):
ref_image_paths = glob.glob(os.path.join(ref_image_path_dir, '*.jpg'))
else:
ref_image_paths = [ref_image_path_dir]
for ref_image_path in ref_image_paths:
for pose_image_path_dir in config["test_cases"][ref_image_path_dir]:
if os.path.isdir(pose_image_path_dir):
pose_image_paths = glob.glob(os.path.join(pose_image_path_dir, '*.jpg'))
else:
pose_image_paths = [pose_image_path_dir]
for pose_image_path in pose_image_paths:
for i in range(args.cnt):
handle_single(ref_image_path, pose_image_path, args.seed + i)
if __name__ == "__main__":
main()