-
Notifications
You must be signed in to change notification settings - Fork 59
/
app_reform_breakdown.py
203 lines (175 loc) · 6.62 KB
/
app_reform_breakdown.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import pandas as pd
import matplotlib.pyplot as plt
# import seaborn as sns
import numpy as np
import json
from taxcalc import *
from babel.numbers import format_currency
from collections import defaultdict
import copy
def remove_decimal(S):
S = str(S)
S = S[:-3]
return S
def ind_currency(curr):
curr_str = format_currency(curr, 'INR',
locale='en_IN').replace(u'\xa0', u' ')
return(remove_decimal(curr_str))
def run_calculator(reform):
# create Records object containing pit.csv and pit_weights.csv input data
recs = Records(data='pit.csv', weights='pit_weights.csv')
grecs = GSTRecords()
crecs = CorpRecords()
# create Policy object containing current-law policy
pol = Policy()
# specify Calculator object for current-law policy
calc1 = Calculator(policy=pol, records=recs, corprecords=crecs,
gstrecords=grecs, verbose=False)
# specify Calculator object for reform in JSON file
# print(reform['policy'])
pol.implement_reform(reform['policy'])
calc2 = Calculator(policy=pol, records=recs, corprecords=crecs,
gstrecords=grecs, verbose=False)
# loop through years 2017, 2018, 2019, and 2020 and print out pitax
wtd_tax_clp = {}
wtd_tax_ref = {}
wtd_tax_diff = {}
for year in range(START_YEAR, END_YEAR+1):
calc1.advance_to_year(year)
calc2.advance_to_year(year)
calc1.calc_all()
calc2.calc_all()
wtd_tax_clp[year] = calc1.weighted_total('pitax')
wtd_tax_ref[year] = calc2.weighted_total('pitax')
wtd_tax_diff[year] = wtd_tax_ref[year] - wtd_tax_clp[year]
return(wtd_tax_clp, wtd_tax_ref, wtd_tax_diff)
def gen_reform(list_tdict):
param_key_dict = dict(list_tdict)
year_param = dict()
for pkey, sdict in param_key_dict.items():
# print(f'pkey: {pkey}')
# print(f'sdict: {sdict}')
rdict = dict()
for skey, val in sdict.items():
year = int(skey)
rdict[year] = val
year_param[pkey] = rdict
year_key_dict = dict()
years = set()
for param, sdict in year_param.items():
for year, val in sdict.items():
if year not in years:
years.add(year)
year_key_dict[year] = dict()
year_key_dict[year][param] = val
rpol_dict = year_key_dict
cons_dict = dict()
behv_dict = dict()
gdiff_base_dict = dict()
gdiff_resp_dict = dict()
growmodel_dict = dict()
param_dict = dict()
param_dict['policy'] = rpol_dict
param_dict['consumption'] = cons_dict
param_dict['behavior'] = behv_dict
param_dict['growdiff_baseline'] = gdiff_base_dict
param_dict['growdiff_response'] = gdiff_resp_dict
param_dict['growmodel'] = growmodel_dict
# print(f'param_dict: {param_dict}')
return param_dict
def get_reform_desc(list_tdict):
ref_num = len(list_tdict)
reform_desc = ""
for i in range(ref_num):
part1 = list_tdict[i][0][1:].upper()
part2 = list(list_tdict[i][1].keys())[0]
part3 = str(list(list_tdict[i][1].values())[0][0])
ref = (part1 + " in " + part2 + "->" + part3)
reform_desc = reform_desc + ref + '\n'
return(reform_desc)
START_YEAR = 2017
END_YEAR = 2023
BASE_YEAR = 2019
# check if Calculator object for reform in JSON file is valid
# using all the checks in the Calculator object
reform_file = 'Budget2019_reform.json'
txt = open(reform_file, 'r').read()
json_str = re.sub('//.*', ' ', txt)
raw_dict = json.loads(json_str)
tdict = Policy.translate_json_reform_suffixes(raw_dict['policy'])
list_tdict = list(tdict.items())
keys_tdict = list(tdict.keys())
ref_num = len(tdict)
reform_desc = []
for i in range(ref_num):
part1 = list_tdict[i][0][1:].upper()
part2 = list(list_tdict[i][1].keys())[0]
part3 = str(list(list_tdict[i][1].values())[0][0])
ref = (part1 + " in " + part2 + "->" + part3)
reform_desc.append(ref)
wtd_tax_clp = {}
wtd_tax_ref = {}
wtd_tax_diff = {}
wtd_tot = {}
reform = {}
# reform_diff={}
# Calculating impact for full reform
"""
reform_overall = gen_reform(list_tdict)
run_calculator(reform_overall, ref_num=99, reform_desc=reform_desc_combined)
(wtd_tax_clp['ref_99'], wtd_tax_ref['ref_99'], wtd_tax_diff['ref_99'],
wtd_tot['ref_99'] = run_calculator(reform_overall, ref_num=99,
reform_desc=reform_desc_combined)
d = dict((k, v) for k, v in wtd_tax_diff['ref_99'].items() if k >= BASE_YEAR)
reform_base = list(d.values())
reform_base = np.array(list(d.values()))
reform_base = np.round(reform_base/10**7)
reform_base = reform_base.astype(int)
"""
# Using stacking process, we first use one reform, then add subsequent reforms
# print('**********************************************')
list_tdict_orig = list_tdict[:]
for i in range(ref_num):
list_tdict = list_tdict_orig[0:i+1]
reform_dict = gen_reform(list_tdict)
reform_desc_ref = get_reform_desc(list_tdict)
ref = 'ref_' + str(i)
(wtd_tax_clp[ref], wtd_tax_ref[ref],
wtd_tax_diff[ref]) = run_calculator(reform_dict)
for year in range(START_YEAR, END_YEAR+1):
if (year >= BASE_YEAR):
print('******')
print(f'Current Law:', end=' ')
print(f' Tax Collection in Rs. Cr. for {year}:', end=' ')
print(f'{ind_currency(wtd_tax_clp[ref][year] * 1e-7)}')
print(f'Reform-> \n{reform_desc_ref}Reform:', end=' ')
print(f' Tax Collection in Rs. Cr. for {year}:', end=' ')
print(f'{ind_currency(wtd_tax_ref[ref][year] * 1e-7)}')
print(' Difference in Tax Collection:', end=' ')
print(f'{ind_currency(wtd_tax_diff[ref][year] * 1e-7)} Cr.')
for i in range(ref_num):
ref_tag = 'ref_' + str(i)
d = dict((k, v)
for k, v in wtd_tax_diff[ref_tag].items() if k >= BASE_YEAR)
reform[i] = np.array(list(d.values()))
reform[i] = np.round(reform[i]/10**7)
reform[i] = reform[i].astype(int)
for i in range(ref_num-1):
reform[i+1] = reform[i+1] - reform[i]
years = list(range(BASE_YEAR, END_YEAR+1))
N = len(years)
width = 0.35
fig, ax = plt.subplots(figsize=(9, 5))
p = {}
bottom_num = np.zeros(N)
for i in range(ref_num):
p[i] = plt.bar(years, reform[i], width, bottom=bottom_num, label="")
bottom_num = np.array(bottom_num) + np.array(reform[i])
ax.invert_yaxis()
ax.set_ylabel('Rupees in Crores.', fontweight="bold")
ax.set_xlabel('Year', fontweight="bold")
plt.legend(reform_desc, loc=2)
plt.suptitle('Composition of the Changes to Total Tax Collection', fontsize=16,
fontweight="bold")
plt.savefig('Composition of Tax Changes due to Reforms.png')
plt.show()