-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathinfluence_function_data_cleaning.py
151 lines (126 loc) · 4.91 KB
/
influence_function_data_cleaning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
"""This example shows how to use the IF to detect low-quality data in the MNIST."""
import argparse
from functools import partial
import torch
from torch import nn
from dattri.algorithm.influence_function import (
IFAttributorArnoldi,
IFAttributorCG,
IFAttributorDataInf,
IFAttributorExplicit,
IFAttributorLiSSA,
)
from dattri.benchmark.datasets.mnist import create_mnist_dataset, train_mnist_lr
from dattri.benchmark.utils import SubsetSampler
from dattri.metric import mislabel_detection_auc
from dattri.task import AttributionTask
ATTRIBUTOR_MAP = {
"explicit": partial(IFAttributorExplicit, regularization=0.01),
"cg": partial(IFAttributorCG, regularization=0.01),
"lissa": partial(IFAttributorLiSSA, recursion_depth=100),
"datainf": partial(IFAttributorDataInf, regularization=0.01),
"arnoldi": partial(IFAttributorArnoldi, regularization=0.01, max_iter=10),
}
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--method", type=str, default="explicit")
parser.add_argument("--device", type=str, default="cuda")
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--train_size", type=int, default=10000)
parser.add_argument("--val_size", type=int, default=10000)
parser.add_argument("--test_size", type=int, default=5000)
parser.add_argument("--remove_number", type=int, default=100)
args = parser.parse_args()
print(args)
# load the training dataset
dataset, dataset_test = create_mnist_dataset("./data")
# for model training, batch size is 64
train_loader_full = torch.utils.data.DataLoader(
dataset,
batch_size=64,
sampler=SubsetSampler(range(args.train_size)),
)
# training samples for attribution
# batch size is 1000 to speed up the process
train_loader = torch.utils.data.DataLoader(
dataset,
batch_size=1000,
sampler=SubsetSampler(range(args.train_size)),
)
val_loader = torch.utils.data.DataLoader(
dataset,
batch_size=1000,
sampler=SubsetSampler(range(args.train_size, args.train_size + args.val_size)),
)
test_loader = torch.utils.data.DataLoader(
dataset_test,
batch_size=1000,
sampler=SubsetSampler(range(args.test_size)),
)
model = train_mnist_lr(train_loader_full, seed=args.seed)
model.to(args.device)
model.eval()
def f(params, data_target_pair):
image, label = data_target_pair
loss = nn.CrossEntropyLoss()
yhat = torch.func.functional_call(model, params, image)
return loss(yhat, label.long())
task = AttributionTask(loss_func=f, model=model, checkpoints=model.state_dict())
attributor = ATTRIBUTOR_MAP[args.method](
task=task,
device=args.device,
)
attributor.cache(train_loader)
with torch.no_grad():
score = attributor.attribute(train_loader, val_loader)
score_overall = score.mean(dim=1)
value, indices = torch.sort(score_overall, descending=True)
# calculate the test loss
loss = nn.CrossEntropyLoss(reduction="none")
loss_value = []
for image, label in test_loader:
image, label = image.to(args.device), label.to(args.device)
yhat = model(image)
loss_value.append(loss(yhat, label.long()))
loss_value = torch.mean(torch.cat(loss_value))
print(f"Test loss: {loss_value}")
# calculate the accuracy
correct = 0
total = 0
for image, label in test_loader:
image, label = image.to(args.device), label.to(args.device)
yhat = model(image)
_, predicted = torch.max(yhat.data, 1)
total += label.size(0)
correct += (predicted == label).sum().item()
print(f"Accuracy: {100 * correct / total}")
REMOVE_NUMBER = args.remove_number
new_training_set = list(range(args.train_size))
new_training_set = [i for i in new_training_set if i not in indices[-REMOVE_NUMBER:].tolist()]
train_loader_full = torch.utils.data.DataLoader(
dataset,
batch_size=64,
sampler=SubsetSampler(new_training_set),
)
model = train_mnist_lr(train_loader_full, seed=args.seed)
model.to(args.device)
model.eval()
# calculate the test loss
loss = nn.CrossEntropyLoss(reduction="none")
loss_value = []
for image, label in test_loader:
image, label = image.to(args.device), label.to(args.device)
yhat = model(image)
loss_value.append(loss(yhat, label.long()))
loss_value = torch.mean(torch.cat(loss_value))
print(f"Test loss (after): {loss_value}")
# calculate the accuracy
correct = 0
total = 0
for image, label in test_loader:
image, label = image.to(args.device), label.to(args.device)
yhat = model(image)
_, predicted = torch.max(yhat.data, 1)
total += label.size(0)
correct += (predicted == label).sum().item()
print(f"Accuracy (after): {100 * correct / total}")