From fac4907614dd04d880cfa9e72e18336ced6e3c50 Mon Sep 17 00:00:00 2001 From: Flatiron Jenkins Date: Mon, 30 Sep 2024 13:18:35 -0400 Subject: [PATCH] Generated documentation for tprf/3.2.x jenkins-TRIQS-tprf-3.2.x-111 b059f45727aa3722a2179e8379d8175d13222cd3 --- .../triqs_tprf/add_dynamic_and_static.rst.txt | 2 +- .../dynamical_screened_interaction_W.rst.txt | 2 +- ..._W_from_generalized_susceptibility.rst.txt | 2 +- .../triqs_tprf/fourier_Tr_to_Tk.rst.txt | 2 +- .../triqs_tprf/g0w_sigma.rst.txt | 2 +- .../triqs_tprf/lindhard_chi00.rst.txt | 18 +--------------- .../triqs_tprf/solve_rpa_PH.rst.txt | 2 +- .../triqs_tprf/add_dynamic_and_static.html | 2 +- .../dynamical_screened_interaction_W.html | 2 +- ...ion_W_from_generalized_susceptibility.html | 2 +- .../triqs_tprf/fourier_Tr_to_Tk.html | 2 +- .../triqs_tprf/g0w_sigma.html | 2 +- .../triqs_tprf/lindhard_chi00.html | 21 +------------------ .../triqs_tprf/solve_rpa_PH.html | 2 +- tprf/3.2.x/searchindex.js | 2 +- 15 files changed, 15 insertions(+), 50 deletions(-) diff --git a/tprf/3.2.x/_sources/cpp2rst_generated/triqs_tprf/add_dynamic_and_static.rst.txt b/tprf/3.2.x/_sources/cpp2rst_generated/triqs_tprf/add_dynamic_and_static.rst.txt index e905cc2b89..f810d239c6 100644 --- a/tprf/3.2.x/_sources/cpp2rst_generated/triqs_tprf/add_dynamic_and_static.rst.txt +++ b/tprf/3.2.x/_sources/cpp2rst_generated/triqs_tprf/add_dynamic_and_static.rst.txt @@ -51,4 +51,4 @@ Parameters Returns ^^^^^^^ -g_fk : Green's function :math:`G_{ab}(\omega, \mathbf{k}) + G_{ab}(\mathbf{k})`. \ No newline at end of file +g_wk : Green's function :math:`G_{ab}(i\omega_n, \mathbf{k}) + G_{ab}(\mathbf{k})`. \ No newline at end of file diff --git a/tprf/3.2.x/_sources/cpp2rst_generated/triqs_tprf/dynamical_screened_interaction_W.rst.txt b/tprf/3.2.x/_sources/cpp2rst_generated/triqs_tprf/dynamical_screened_interaction_W.rst.txt index 3c70b43544..d3b2047510 100644 --- a/tprf/3.2.x/_sources/cpp2rst_generated/triqs_tprf/dynamical_screened_interaction_W.rst.txt +++ b/tprf/3.2.x/_sources/cpp2rst_generated/triqs_tprf/dynamical_screened_interaction_W.rst.txt @@ -107,4 +107,4 @@ Parameters Returns ^^^^^^^ -dynamical screened interaction :math:`W_{abcd}(\omega, \mathbf{k})` \ No newline at end of file +dynamical screened interaction :math:`W_{abcd}(i\omega_n, \mathbf{k})` \ No newline at end of file diff --git a/tprf/3.2.x/_sources/cpp2rst_generated/triqs_tprf/dynamical_screened_interaction_W_from_generalized_susceptibility.rst.txt b/tprf/3.2.x/_sources/cpp2rst_generated/triqs_tprf/dynamical_screened_interaction_W_from_generalized_susceptibility.rst.txt index 61a6935f7e..f1c7f6c4f0 100644 --- a/tprf/3.2.x/_sources/cpp2rst_generated/triqs_tprf/dynamical_screened_interaction_W_from_generalized_susceptibility.rst.txt +++ b/tprf/3.2.x/_sources/cpp2rst_generated/triqs_tprf/dynamical_screened_interaction_W_from_generalized_susceptibility.rst.txt @@ -111,4 +111,4 @@ Parameters Returns ^^^^^^^ -dynamical screened interaction :math:`W_{abcd}(\omega, \mathbf{k})` \ No newline at end of file +dynamical screened interaction :math:`W_{abcd}(i\omega_n, \mathbf{k})` \ No newline at end of file diff --git a/tprf/3.2.x/_sources/cpp2rst_generated/triqs_tprf/fourier_Tr_to_Tk.rst.txt b/tprf/3.2.x/_sources/cpp2rst_generated/triqs_tprf/fourier_Tr_to_Tk.rst.txt index 7a5eddc8d1..bfe05f2611 100644 --- a/tprf/3.2.x/_sources/cpp2rst_generated/triqs_tprf/fourier_Tr_to_Tk.rst.txt +++ b/tprf/3.2.x/_sources/cpp2rst_generated/triqs_tprf/fourier_Tr_to_Tk.rst.txt @@ -51,4 +51,4 @@ Parameters Returns ^^^^^^^ -k-space real time Green's function :math:`G_{a\bar{b}c\bar{d}}(t, \mathbf{k})` \ No newline at end of file +k-space real time Green's function :math:`G_{a\bar{b}}(t, \mathbf{k})` \ No newline at end of file diff --git a/tprf/3.2.x/_sources/cpp2rst_generated/triqs_tprf/g0w_sigma.rst.txt b/tprf/3.2.x/_sources/cpp2rst_generated/triqs_tprf/g0w_sigma.rst.txt index 5f5fb5097e..e50ba41b6f 100644 --- a/tprf/3.2.x/_sources/cpp2rst_generated/triqs_tprf/g0w_sigma.rst.txt +++ b/tprf/3.2.x/_sources/cpp2rst_generated/triqs_tprf/g0w_sigma.rst.txt @@ -144,4 +144,4 @@ Parameters Returns ^^^^^^^ -real frequency GW self-energy :math:`\Sigma_{ab}(\omega, \mathbf{k})` \ No newline at end of file +static GW self-energy :math:`\Sigma_{ab}(\mathbf{k})` \ No newline at end of file diff --git a/tprf/3.2.x/_sources/cpp2rst_generated/triqs_tprf/lindhard_chi00.rst.txt b/tprf/3.2.x/_sources/cpp2rst_generated/triqs_tprf/lindhard_chi00.rst.txt index 6342fd3d7c..2ab1bda70b 100644 --- a/tprf/3.2.x/_sources/cpp2rst_generated/triqs_tprf/lindhard_chi00.rst.txt +++ b/tprf/3.2.x/_sources/cpp2rst_generated/triqs_tprf/lindhard_chi00.rst.txt @@ -133,20 +133,4 @@ Parameters Returns ^^^^^^^ -generalized Lindhard susceptibility in the particle-hole channel :math:`\chi^{(00)}_{\bar{a}b\bar{c}d}(i\omega_n, \mathbf{q})` - - .. math:: - \sum_{\bar{a}b} U_{i\bar{a}}(\mathbf{k}) \epsilon_{\bar{a}b}(\mathbf{k}) U^\dagger_{bj} (\mathbf{k}) - = \delta_{ij} \epsilon_{\mathbf{k}, i} - - .. note:: - The analytic formula is sub-optimal in terms of performance for higher temperatures. The evaluation - scales as :math:`\mathcal{O}(N_k^2)` which is worse than computing the bubble explicitly in imaginary - time, with scaling :math:`\mathcal{O}(N_k N_\tau \log(N_k N_\tau)` for :math:`N_k \gg N_\tau`. - - .. note:: - Care must be taken when evaluating the fermionic Matsubara frequency sum of the - product of two simple poles. By extending the sum to an integral over the complex - plane the standard expression for the Lindhard response is obtained when the - poles are non-degenerate. The degenerate case produces an additional frequency independent - contribution (the last term on the last row). \ No newline at end of file +real frequency generalized Lindhard susceptibility in the particle-hole channel :math:`\chi^{(00)}_{\bar{a}b\bar{c}d}(\omega, \mathbf{q})` \ No newline at end of file diff --git a/tprf/3.2.x/_sources/cpp2rst_generated/triqs_tprf/solve_rpa_PH.rst.txt b/tprf/3.2.x/_sources/cpp2rst_generated/triqs_tprf/solve_rpa_PH.rst.txt index 30ab9ab6f1..587539b5f5 100644 --- a/tprf/3.2.x/_sources/cpp2rst_generated/triqs_tprf/solve_rpa_PH.rst.txt +++ b/tprf/3.2.x/_sources/cpp2rst_generated/triqs_tprf/solve_rpa_PH.rst.txt @@ -65,4 +65,4 @@ Parameters Returns ^^^^^^^ -RPA suceptibility :math:`\chi_{\bar{a}b\bar{c}d}(\mathbf{k}, i\omega_n)` \ No newline at end of file +RPA suceptibility :math:`\chi_{\bar{a}b\bar{c}d}(\mathbf{k}, \omega)` \ No newline at end of file diff --git a/tprf/3.2.x/cpp2rst_generated/triqs_tprf/add_dynamic_and_static.html b/tprf/3.2.x/cpp2rst_generated/triqs_tprf/add_dynamic_and_static.html index cb52f9b3df..5c938b499a 100644 --- a/tprf/3.2.x/cpp2rst_generated/triqs_tprf/add_dynamic_and_static.html +++ b/tprf/3.2.x/cpp2rst_generated/triqs_tprf/add_dynamic_and_static.html @@ -703,7 +703,7 @@

Parameters

Returns

-

g_fk : Green’s function \(G_{ab}(\omega, \mathbf{k}) + G_{ab}(\mathbf{k})\).

+

g_wk : Green’s function \(G_{ab}(i\omega_n, \mathbf{k}) + G_{ab}(\mathbf{k})\).

diff --git a/tprf/3.2.x/cpp2rst_generated/triqs_tprf/dynamical_screened_interaction_W.html b/tprf/3.2.x/cpp2rst_generated/triqs_tprf/dynamical_screened_interaction_W.html index 1bc41c3bc8..feb2a21bb0 100644 --- a/tprf/3.2.x/cpp2rst_generated/triqs_tprf/dynamical_screened_interaction_W.html +++ b/tprf/3.2.x/cpp2rst_generated/triqs_tprf/dynamical_screened_interaction_W.html @@ -759,7 +759,7 @@

Parameters

Returns

-

dynamical screened interaction \(W_{abcd}(\omega, \mathbf{k})\)

+

dynamical screened interaction \(W_{abcd}(i\omega_n, \mathbf{k})\)

diff --git a/tprf/3.2.x/cpp2rst_generated/triqs_tprf/dynamical_screened_interaction_W_from_generalized_susceptibility.html b/tprf/3.2.x/cpp2rst_generated/triqs_tprf/dynamical_screened_interaction_W_from_generalized_susceptibility.html index 7bb161cf0d..860bfcbc74 100644 --- a/tprf/3.2.x/cpp2rst_generated/triqs_tprf/dynamical_screened_interaction_W_from_generalized_susceptibility.html +++ b/tprf/3.2.x/cpp2rst_generated/triqs_tprf/dynamical_screened_interaction_W_from_generalized_susceptibility.html @@ -771,7 +771,7 @@

Parameters

Returns

-

dynamical screened interaction \(W_{abcd}(\omega, \mathbf{k})\)

+

dynamical screened interaction \(W_{abcd}(i\omega_n, \mathbf{k})\)

diff --git a/tprf/3.2.x/cpp2rst_generated/triqs_tprf/fourier_Tr_to_Tk.html b/tprf/3.2.x/cpp2rst_generated/triqs_tprf/fourier_Tr_to_Tk.html index 6484c763af..e4b9b0efe6 100644 --- a/tprf/3.2.x/cpp2rst_generated/triqs_tprf/fourier_Tr_to_Tk.html +++ b/tprf/3.2.x/cpp2rst_generated/triqs_tprf/fourier_Tr_to_Tk.html @@ -707,7 +707,7 @@

Parameters

Returns

-

k-space real time Green’s function \(G_{a\bar{b}c\bar{d}}(t, \mathbf{k})\)

+

k-space real time Green’s function \(G_{a\bar{b}}(t, \mathbf{k})\)

diff --git a/tprf/3.2.x/cpp2rst_generated/triqs_tprf/g0w_sigma.html b/tprf/3.2.x/cpp2rst_generated/triqs_tprf/g0w_sigma.html index 232c5de716..9ffab6bec3 100644 --- a/tprf/3.2.x/cpp2rst_generated/triqs_tprf/g0w_sigma.html +++ b/tprf/3.2.x/cpp2rst_generated/triqs_tprf/g0w_sigma.html @@ -797,7 +797,7 @@

Parameters

Returns

-

real frequency GW self-energy \(\Sigma_{ab}(\omega, \mathbf{k})\)

+

static GW self-energy \(\Sigma_{ab}(\mathbf{k})\)

diff --git a/tprf/3.2.x/cpp2rst_generated/triqs_tprf/lindhard_chi00.html b/tprf/3.2.x/cpp2rst_generated/triqs_tprf/lindhard_chi00.html index 87ab0bfb06..f886e6a506 100644 --- a/tprf/3.2.x/cpp2rst_generated/triqs_tprf/lindhard_chi00.html +++ b/tprf/3.2.x/cpp2rst_generated/triqs_tprf/lindhard_chi00.html @@ -782,26 +782,7 @@

Parameters

Returns

-

generalized Lindhard susceptibility in the particle-hole channel \(\chi^{(00)}_{\bar{a}b\bar{c}d}(i\omega_n, \mathbf{q})\)

-
-
-\[\sum_{\bar{a}b} U_{i\bar{a}}(\mathbf{k}) \epsilon_{\bar{a}b}(\mathbf{k}) U^\dagger_{bj} (\mathbf{k}) -= \delta_{ij} \epsilon_{\mathbf{k}, i}\]
-
-

Note

-

The analytic formula is sub-optimal in terms of performance for higher temperatures. The evaluation -scales as \(\mathcal{O}(N_k^2)\) which is worse than computing the bubble explicitly in imaginary -time, with scaling \(\mathcal{O}(N_k N_\tau \log(N_k N_\tau)\) for \(N_k \gg N_\tau\).

-
-
-

Note

-

Care must be taken when evaluating the fermionic Matsubara frequency sum of the -product of two simple poles. By extending the sum to an integral over the complex -plane the standard expression for the Lindhard response is obtained when the -poles are non-degenerate. The degenerate case produces an additional frequency independent -contribution (the last term on the last row).

-
-
+

real frequency generalized Lindhard susceptibility in the particle-hole channel \(\chi^{(00)}_{\bar{a}b\bar{c}d}(\omega, \mathbf{q})\)

diff --git a/tprf/3.2.x/cpp2rst_generated/triqs_tprf/solve_rpa_PH.html b/tprf/3.2.x/cpp2rst_generated/triqs_tprf/solve_rpa_PH.html index b6bb89ebb2..cefed517c9 100644 --- a/tprf/3.2.x/cpp2rst_generated/triqs_tprf/solve_rpa_PH.html +++ b/tprf/3.2.x/cpp2rst_generated/triqs_tprf/solve_rpa_PH.html @@ -722,7 +722,7 @@

Parameters

Returns

-

RPA suceptibility \(\chi_{\bar{a}b\bar{c}d}(\mathbf{k}, i\omega_n)\)

+

RPA suceptibility \(\chi_{\bar{a}b\bar{c}d}(\mathbf{k}, \omega)\)

diff --git a/tprf/3.2.x/searchindex.js b/tprf/3.2.x/searchindex.js index 8dc46486c7..d84e4d548a 100644 --- a/tprf/3.2.x/searchindex.js +++ b/tprf/3.2.x/searchindex.js @@ -1 +1 @@ -Search.setIndex({"alltitles": {"(Anti-)Periodicity": [[80, null]], "1. Construct the density- and magnetic-susceptibilties in RPA": [[91, "1.-Construct-the-density--and-magnetic-susceptibilties-in-RPA"]], "2. Construct the particle-particle vertex in RPA": [[91, "2.-Construct-the-particle-particle-vertex-in-RPA"]], "3. Construct the symmetrizing functions": [[91, "3.-Construct-the-symmetrizing-functions"]], "4. Solve the linearized Eliashberg equation": [[91, "4.-Solve-the-linearized-Eliashberg-equation"]], "Anaconda (experimental)": [[76, "anaconda-experimental"]], "Analytic susceptibility": [[90, "Analytic-susceptibility"]], "Analytic vertex \\Gamma_m^{(PH)}": [[87, "Analytic-vertex-\\Gamma_m^{(PH)}"]], "Antisymmetrized interaction tensor U": [[84, "antisymmetrized-interaction-tensor-u"]], "Authors": [[1, null]], "BSE frequency window convergence": [[87, "BSE-frequency-window-convergence"]], "Bare and full susceptibility \\chi_0 and \\chi": [[87, "Bare-and-full-susceptibility-\\chi_0-and-\\chi"]], "Bare generalized susceptibility \\chi_0": [[83, "bare-generalized-susceptibility-chi-0"], [92, "Bare-generalized-susceptibility-\\chi_0"]], "Bethe-Salpeter Equation (BSE) for \\Gamma_m^{(PH)}": [[87, "Bethe-Salpeter-Equation-(BSE)-for-\\Gamma_m^{(PH)}"]], "Bethe-Salpeter Equation (BSE) on the Hubbard atom": [[87, null]], "Bethe-Salpeter equation (BSE)": [[0, "bethe-salpeter-equation-bse"]], "Bethe-Salpeter equations (BSE)": [[83, "bethe-salpeter-equations-bse"]], "Bethe-Salpeter equations for the fully reducible vertex F": [[86, "bethe-salpeter-equations-for-the-fully-reducible-vertex-f"]], "C++ reference manual": [[73, "c-reference-manual"]], "Changelog": [[0, null]], "Chi0": [[0, "chi0"]], "Compiling TPRF from source": [[76, "compiling-tprf-from-source"]], "Crossed-Particle-Particle channel (PPx)": [[86, "crossed-particle-particle-channel-ppx"]], "Crossed-Particle-particle channel (PPx)": [[83, "crossed-particle-particle-channel-ppx"]], "Custom CMake options": [[76, "custom-cmake-options"]], "DMFT Self-Consistent Step": [[93, "dmft-self-consistent-step"]], "DMFT lattice susceptibility": [[94, null]], "DMFT local vertex": [[94, "dmft-local-vertex"]], "DMFT self consistent framework": [[93, null]], "Derivation: Product relations": [[86, "derivation-product-relations"]], "Deriving the linearized Eliashberg equation from the normal state": [[81, "deriving-the-linearized-eliashberg-equation-from-the-normal-state"]], "Details for applications": [[81, "details-for-applications"]], "Disclaimer": [[1, "disclaimer"]], "Discrete Lehmann Representation (DLR) support": [[0, "discrete-lehmann-representation-dlr-support"], [0, "id2"]], "Dispersion \\epsilon(\\mathbf{k}) and Fermi surface": [[92, "Dispersion-\\epsilon(\\mathbf{k})-and-Fermi-surface"]], "Docker": [[76, "docker"]], "Documentation": [[0, "documentation"], [73, null]], "Dual Bethe-Salpeter Equation": [[79, "dual-bethe-salpeter-equation"]], "Dual Bethe-Salpeter Equation (DBSE)": [[0, "dual-bethe-salpeter-equation-dbse"]], "Dual Bethe-Salpeter equation": [[96, "dual-bethe-salpeter-equation"]], "Eliashberg": [[0, "eliashberg"]], "Example": [[84, "example"]], "FAQs": [[73, "faqs"]], "Field operator Matsubara transforms": [[85, "field-operator-matsubara-transforms"]], "Frequency: Even, Momentum: Even": [[91, "Frequency:-Even,-Momentum:-Even"]], "Frequency: Odd, Momentum: Odd": [[91, "Frequency:-Odd,-Momentum:-Odd"]], "Frequently-asked questions": [[74, null]], "From an applied external field": [[82, "from-an-applied-external-field"]], "From the generalized susceptibility": [[82, "from-the-generalized-susceptibility"]], "Full generalized particle-hole susceptibility \\chi": [[83, "full-generalized-particle-hole-susceptibility-chi"]], "Fully reducible vertex F": [[86, "fully-reducible-vertex-f"]], "Functions": [[3, "functions"]], "GW approximation": [[78, "gw-approximation"], [79, "gw-approximation"]], "General": [[0, "general"], [0, "id3"], [0, "id6"]], "Generalization to two-particle Green\u2019s functions": [[80, "generalization-to-two-particle-green-s-functions"]], "Generalized bubble susceptibility (for RPA)": [[78, "generalized-bubble-susceptibility-for-rpa"]], "Generalized impurity susceptibility": [[78, "generalized-impurity-susceptibility"]], "Generalized susceptibility \\chi": [[83, "generalized-susceptibility-chi"]], "Generalized susceptibility and the Bethe-Salpeter equation": [[78, "generalized-susceptibility-and-the-bethe-salpeter-equation"]], "Hartree-Fock": [[0, "hartree-fock"]], "Hartree-Fock and Hartree solvers": [[79, "hartree-fock-and-hartree-solvers"]], "Hedin\u2019s GW approximation": [[0, "hedins-gw-approximation"]], "Hubbard atom analytic response functions": [[78, "hubbard-atom-analytic-response-functions"], [79, "hubbard-atom-analytic-response-functions"]], "Hubbard model on a square lattice": [[89, "Hubbard-model-on-a-square-lattice"]], "Implementation details": [[93, "implementation-details"]], "Impurity susceptibility and Bethe-Salpeter Equation": [[79, "impurity-susceptibility-and-bethe-salpeter-equation"]], "Installation steps": [[76, "installation-steps"]], "Interaction": [[84, "interaction"]], "Kubo-Martin-Schwinger (KMS) boundary conditions": [[80, "kubo-martin-schwinger-kms-boundary-conditions"]], "Lattice Bethe-Salpeter Equation": [[79, "lattice-bethe-salpeter-equation"], [94, "lattice-bethe-salpeter-equation"]], "Lattice Bethe-Salpeter Equation (BSE)": [[88, null]], "Lattice Green\u2019s functions": [[78, null], [79, null]], "Lattice susceptibility from the Bethe-Salpeter Equation": [[94, "lattice-susceptibility-from-the-bethe-salpeter-equation"]], "License": [[1, "license"]], "Lindhard non-interacting generalized susceptibility": [[78, "lindhard-non-interacting-generalized-susceptibility"]], "Linear response": [[82, null]], "Linearized Eliashberg Equation": [[81, null]], "Linearized Eliashberg equation": [[78, "linearized-eliashberg-equation"], [79, "linearized-eliashberg-equation"]], "Linearized Eliashberg equation on the attractive Hubbard model": [[89, null]], "Maintenance": [[0, "maintenance"]], "Mapping between spin-dependent and independent quantities": [[84, "mapping-between-spin-dependent-and-independent-quantities"]], "Matrix RPA": [[84, "id1"]], "Matsubara frequency parametrization": [[86, "matsubara-frequency-parametrization"]], "Matsubara frequency transforms": [[83, "matsubara-frequency-transforms"]], "Mean field and RPA response for the one dimensional Hubbard model.": [[90, null]], "Mean-field decoupling": [[90, "Mean-field-decoupling"]], "Non-interacting generalized susceptibility": [[79, "non-interacting-generalized-susceptibility"]], "On the single particle Green\u2019s function": [[85, null]], "Packaged Versions of TPRF": [[76, null]], "Parameter collections": [[79, "parameter-collections"]], "Parameters": [[4, "parameters"], [5, "parameters"], [6, "parameters"], [7, "parameters"], [8, "parameters"], [9, "parameters"], [10, "parameters"], [11, "parameters"], [12, "parameters"], [13, "parameters"], [14, "parameters"], [15, "parameters"], [16, "parameters"], [17, "parameters"], [18, "parameters"], [19, "parameters"], [20, "parameters"], [21, "parameters"], [22, "parameters"], [23, "parameters"], [24, "parameters"], [25, "parameters"], [26, "parameters"], [27, "parameters"], [28, "parameters"], [29, "parameters"], [30, "parameters"], [31, "parameters"], [32, "parameters"], [33, "parameters"], [34, "parameters"], [35, "parameters"], [36, "parameters"], [37, "parameters"], [38, "parameters"], [39, "parameters"], [40, "parameters"], [41, "parameters"], [42, "parameters"], [43, "parameters"], [44, "parameters"], [45, "parameters"], [46, "parameters"], [47, "parameters"], [48, "parameters"], [49, "parameters"], [50, "parameters"], [51, "parameters"], [52, "parameters"], [53, "parameters"], [54, "parameters"], [55, "parameters"], [56, "parameters"], [57, "parameters"], [58, "parameters"], [59, "parameters"], [60, "parameters"], [61, "parameters"], [62, "parameters"], [63, "parameters"], [64, "parameters"], [65, "parameters"], [66, "parameters"], [67, "parameters"], [68, "parameters"], [69, "parameters"], [70, "parameters"], [71, "parameters"], [72, "parameters"]], "Particle-Hole channel (PH)": [[86, "particle-hole-channel-ph"]], "Particle-Particle channel (PP)": [[86, "particle-particle-channel-pp"]], "Particle-hole channel (PH)": [[83, "particle-hole-channel-ph"]], "Physical response function \\chi_{S_z, S_z}": [[92, "Physical-response-function-\\chi_{S_z,-S_z}"]], "Prerequisites": [[76, "prerequisites"]], "Pseudo potentials used": [[95, null]], "Python reference manual": [[73, "python-reference-manual"]], "Q: Why is not feature X implemented?": [[74, "q-why-is-not-feature-x-implemented"]], "Random Phase Approximation": [[78, "random-phase-approximation"], [79, "random-phase-approximation"]], "Random phase approximation (RPA)": [[84, null], [92, "Random-phase-approximation-(RPA)"]], "Random phase approximation for the irreducible particle-particle vertex": [[81, "random-phase-approximation-for-the-irreducible-particle-particle-vertex"]], "Reducible vertex function F": [[83, "reducible-vertex-function-f"]], "Relation to the BCS gap equation": [[81, "relation-to-the-bcs-gap-equation"]], "Reporting issues": [[77, null]], "Response function notation": [[83, null]], "Returns": [[4, "returns"], [5, "returns"], [6, "returns"], [7, "returns"], [8, "returns"], [9, "returns"], [10, "returns"], [11, "returns"], [12, "returns"], [13, "returns"], [14, "returns"], [15, "returns"], [16, "returns"], [17, "returns"], [18, "returns"], [19, "returns"], [20, "returns"], [21, "returns"], [22, "returns"], [23, "returns"], [24, "returns"], [25, "returns"], [26, "returns"], [27, "returns"], [28, "returns"], [29, "returns"], [30, "returns"], [31, "returns"], [32, "returns"], [33, "returns"], [34, "returns"], [35, "returns"], [36, "returns"], [37, "returns"], [38, "returns"], [39, "returns"], [40, "returns"], [41, "returns"], [42, "returns"], [43, "returns"], [44, "returns"], [45, "returns"], [46, "returns"], [47, "returns"], [48, "returns"], [49, "returns"], [50, "returns"], [51, "returns"], [52, "returns"], [53, "returns"], [54, "returns"], [55, "returns"], [56, "returns"], [57, "returns"], [58, "returns"], [59, "returns"], [60, "returns"], [61, "returns"], [62, "returns"], [63, "returns"], [64, "returns"], [65, "returns"], [66, "returns"], [67, "returns"], [68, "returns"], [69, "returns"], [70, "returns"], [71, "returns"], [72, "returns"]], "SPOT Condition": [[81, "spot-condition"]], "Self consistent calculations in applied field": [[94, "self-consistent-calculations-in-applied-field"]], "Semi particle-hole transformation": [[89, "Semi-particle-hole-transformation"]], "Setup DMFT Calculation": [[93, "setup-dmft-calculation"]], "Single-particle Green\u2019s function G_{\\sigma \\sigma'}(i\\omega_n)": [[87, "Single-particle-Green's-function-G_{\\sigma-\\sigma'}(i\\omega_n)"]], "Solve Self-Consistent DMFT": [[93, "solve-self-consistent-dmft"]], "Solving the linearized Eliashberg equation": [[89, "Solving-the-linearized-Eliashberg-equation"]], "Solving the linearized Eliashberg equation in the random phase approximation limit": [[91, null]], "Spin susceptibility in Sr2RuO4": [[96, null]], "Spin-independent RPA calculations": [[84, "spin-independent-rpa-calculations"]], "Square lattice susceptibility and the Random Phase Approximation (RPA)": [[92, null]], "Summary": [[94, "summary"]], "TPRF tensor valued calculation": [[90, "TPRF-tensor-valued-calculation"]], "TRIQS compatibility": [[0, "triqs-compatibility"]], "Template parameters": [[51, "template-parameters"], [52, "template-parameters"], [53, "template-parameters"], [54, "template-parameters"], [55, "template-parameters"], [66, "template-parameters"], [67, "template-parameters"], [68, "template-parameters"], [69, "template-parameters"]], "The Two-Particle Response Function tool box (TPRF)": [[75, null]], "Theory and notation": [[73, "theory-and-notation"]], "Tight binding Hamiltonian": [[92, "Tight-binding-Hamiltonian"]], "Tight binding lattice model": [[79, "tight-binding-lattice-model"]], "Tutorials": [[73, "tutorials"]], "Two-particle Green\u2019s functions": [[80, "two-particle-green-s-functions"]], "Two-particle response function linear-algebra operations": [[78, "two-particle-response-function-linear-algebra-operations"], [79, "two-particle-response-function-linear-algebra-operations"]], "Type aliases": [[3, "type-aliases"]], "Ubuntu Debian packages": [[76, "ubuntu-debian-packages"]], "Utility functions": [[79, "utility-functions"]], "Version 2.1.1": [[0, "version-2-1-1"]], "Version 2.2.0": [[0, "version-2-2-0"]], "Version 3.0.0": [[0, "version-3-0-0"]], "Version 3.1.0": [[0, "version-3-1-0"]], "Version 3.1.1": [[0, "version-3-1-1"]], "Version 3.2.0": [[0, "version-3-2-0"]], "Version 3.2.1": [[0, "version-3-2-1"]], "Version compatibility": [[76, "version-compatibility"]], "Vertex functions": [[86, null]], "Vertical-Particle-Hole channel (\\bar{PH})": [[86, "vertical-particle-hole-channel-bar-ph"]], "Wannier90 tight binding parsers": [[79, "wannier90-tight-binding-parsers"]], "cmake": [[0, "cmake"]], "doc": [[0, "doc"], [0, "id4"], [0, "id5"]], "fourier": [[0, "fourier"]], "hf": [[0, "hf"]], "py": [[0, "py"]], "py3": [[0, "py3"]], "python": [[0, "python"]], "tprf 3.2.0": [[75, null]], "triqs_tprf": [[3, null]], "triqs_tprf::add_dynamic_and_static": [[4, null]], "triqs_tprf::bose": [[5, null]], "triqs_tprf::chi0_Tr_from_g_Tr_PH": [[6, null]], "triqs_tprf::chi0_from_gg2_PH": [[7, null]], "triqs_tprf::chi0_from_gg2_PP": [[8, null]], "triqs_tprf::chi0_tau_from_g_tau_PH": [[9, null]], "triqs_tprf::chi0_tr_from_grt_PH": [[10, null]], "triqs_tprf::chi0_w0r_from_grt_PH": [[11, null]], "triqs_tprf::chi0q_from_chi0r": [[12, null]], "triqs_tprf::chi0q_from_g_wk_PH": [[13, null]], "triqs_tprf::chi0q_sum_nu": [[14, null]], "triqs_tprf::chi0q_sum_nu_q": [[15, null]], "triqs_tprf::chi0q_sum_nu_tail_corr_PH": [[16, null]], "triqs_tprf::chi0r_from_chi0q": [[17, null]], "triqs_tprf::chi0r_from_gr_PH": [[18, null]], "triqs_tprf::chi0r_from_gr_PH_nompi": [[19, null]], "triqs_tprf::chi_from_gg2_PH": [[20, null]], "triqs_tprf::chi_from_gg2_PP": [[21, null]], "triqs_tprf::chi_tr_from_chi_wr": [[22, null]], "triqs_tprf::chi_w0r_from_chi_tr": [[23, null]], "triqs_tprf::chi_wk_from_chi_wr": [[24, null]], "triqs_tprf::chi_wr_from_chi_tr": [[25, null]], "triqs_tprf::chi_wr_from_chi_wk": [[26, null]], "triqs_tprf::chiq_from_chi0q_and_gamma_PH": [[27, null]], "triqs_tprf::chiq_sum_nu_from_chi0q_and_gamma_PH": [[28, null]], "triqs_tprf::chiq_sum_nu_from_chi0q_and_gamma_and_L_wn_PH": [[29, null]], "triqs_tprf::construct_phi_wk": [[30, null]], "triqs_tprf::dynamic_and_constant_to_tr": [[31, null]], "triqs_tprf::dynamical_screened_interaction_W": [[32, null]], "triqs_tprf::dynamical_screened_interaction_W_from_generalized_susceptibility": [[33, null]], "triqs_tprf::eliashberg_product": [[34, null]], "triqs_tprf::eliashberg_product_fft": [[35, null]], "triqs_tprf::fermi": [[36, null]], "triqs_tprf::fock_sigma": [[37, null]], "triqs_tprf::fourier_Tk_to_Tr": [[38, null]], "triqs_tprf::fourier_Tr_to_Tk": [[39, null]], "triqs_tprf::fourier_fk_to_fr": [[40, null]], "triqs_tprf::fourier_fr_to_fk": [[41, null]], "triqs_tprf::fourier_tr_to_wr": [[42, null]], "triqs_tprf::fourier_wk_to_wr": [[43, null]], "triqs_tprf::fourier_wr_to_tr": [[44, null]], "triqs_tprf::fourier_wr_to_wk": [[45, null]], "triqs_tprf::g0w_dynamic_sigma": [[46, null]], "triqs_tprf::g0w_sigma": [[47, null]], "triqs_tprf::gw_dynamic_sigma": [[48, null]], "triqs_tprf::gw_sigma": [[49, null]], "triqs_tprf::hartree_sigma": [[50, null]], "triqs_tprf::identity": [[51, null]], "triqs_tprf::identity_PH": [[52, null]], "triqs_tprf::identity_PH_bar": [[53, null]], "triqs_tprf::identity_PP": [[54, null]], "triqs_tprf::inverse": [[55, null]], "triqs_tprf::inverse_PH": [[56, null]], "triqs_tprf::inverse_PH_bar": [[57, null]], "triqs_tprf::inverse_PP": [[58, null]], "triqs_tprf::lattice_dyson_g0_fk": [[59, null]], "triqs_tprf::lattice_dyson_g0_wk": [[60, null]], "triqs_tprf::lattice_dyson_g_f": [[61, null]], "triqs_tprf::lattice_dyson_g_fk": [[62, null]], "triqs_tprf::lattice_dyson_g_w": [[63, null]], "triqs_tprf::lattice_dyson_g_wk": [[64, null]], "triqs_tprf::lindhard_chi00": [[65, null]], "triqs_tprf::product": [[66, null]], "triqs_tprf::product_PH": [[67, null]], "triqs_tprf::product_PH_bar": [[68, null]], "triqs_tprf::product_PP": [[69, null]], "triqs_tprf::rho_k_from_g_wk": [[70, null]], "triqs_tprf::solve_rpa_PH": [[71, null]], "triqs_tprf::split_into_dynamic_wk_and_constant_k": [[72, null]]}, "docnames": ["ChangeLog", "about", "cpp2rst_generated/contents", "cpp2rst_generated/triqs_tprf", "cpp2rst_generated/triqs_tprf/add_dynamic_and_static", "cpp2rst_generated/triqs_tprf/bose", "cpp2rst_generated/triqs_tprf/chi0_Tr_from_g_Tr_PH", "cpp2rst_generated/triqs_tprf/chi0_from_gg2_PH", "cpp2rst_generated/triqs_tprf/chi0_from_gg2_PP", "cpp2rst_generated/triqs_tprf/chi0_tau_from_g_tau_PH", "cpp2rst_generated/triqs_tprf/chi0_tr_from_grt_PH", "cpp2rst_generated/triqs_tprf/chi0_w0r_from_grt_PH", "cpp2rst_generated/triqs_tprf/chi0q_from_chi0r", "cpp2rst_generated/triqs_tprf/chi0q_from_g_wk_PH", "cpp2rst_generated/triqs_tprf/chi0q_sum_nu", "cpp2rst_generated/triqs_tprf/chi0q_sum_nu_q", "cpp2rst_generated/triqs_tprf/chi0q_sum_nu_tail_corr_PH", "cpp2rst_generated/triqs_tprf/chi0r_from_chi0q", "cpp2rst_generated/triqs_tprf/chi0r_from_gr_PH", "cpp2rst_generated/triqs_tprf/chi0r_from_gr_PH_nompi", "cpp2rst_generated/triqs_tprf/chi_from_gg2_PH", "cpp2rst_generated/triqs_tprf/chi_from_gg2_PP", "cpp2rst_generated/triqs_tprf/chi_tr_from_chi_wr", "cpp2rst_generated/triqs_tprf/chi_w0r_from_chi_tr", "cpp2rst_generated/triqs_tprf/chi_wk_from_chi_wr", "cpp2rst_generated/triqs_tprf/chi_wr_from_chi_tr", "cpp2rst_generated/triqs_tprf/chi_wr_from_chi_wk", "cpp2rst_generated/triqs_tprf/chiq_from_chi0q_and_gamma_PH", "cpp2rst_generated/triqs_tprf/chiq_sum_nu_from_chi0q_and_gamma_PH", "cpp2rst_generated/triqs_tprf/chiq_sum_nu_from_chi0q_and_gamma_and_L_wn_PH", "cpp2rst_generated/triqs_tprf/construct_phi_wk", "cpp2rst_generated/triqs_tprf/dynamic_and_constant_to_tr", "cpp2rst_generated/triqs_tprf/dynamical_screened_interaction_W", "cpp2rst_generated/triqs_tprf/dynamical_screened_interaction_W_from_generalized_susceptibility", "cpp2rst_generated/triqs_tprf/eliashberg_product", "cpp2rst_generated/triqs_tprf/eliashberg_product_fft", "cpp2rst_generated/triqs_tprf/fermi", "cpp2rst_generated/triqs_tprf/fock_sigma", "cpp2rst_generated/triqs_tprf/fourier_Tk_to_Tr", "cpp2rst_generated/triqs_tprf/fourier_Tr_to_Tk", "cpp2rst_generated/triqs_tprf/fourier_fk_to_fr", "cpp2rst_generated/triqs_tprf/fourier_fr_to_fk", "cpp2rst_generated/triqs_tprf/fourier_tr_to_wr", "cpp2rst_generated/triqs_tprf/fourier_wk_to_wr", "cpp2rst_generated/triqs_tprf/fourier_wr_to_tr", "cpp2rst_generated/triqs_tprf/fourier_wr_to_wk", "cpp2rst_generated/triqs_tprf/g0w_dynamic_sigma", "cpp2rst_generated/triqs_tprf/g0w_sigma", "cpp2rst_generated/triqs_tprf/gw_dynamic_sigma", "cpp2rst_generated/triqs_tprf/gw_sigma", "cpp2rst_generated/triqs_tprf/hartree_sigma", "cpp2rst_generated/triqs_tprf/identity", "cpp2rst_generated/triqs_tprf/identity_PH", "cpp2rst_generated/triqs_tprf/identity_PH_bar", "cpp2rst_generated/triqs_tprf/identity_PP", "cpp2rst_generated/triqs_tprf/inverse", "cpp2rst_generated/triqs_tprf/inverse_PH", "cpp2rst_generated/triqs_tprf/inverse_PH_bar", "cpp2rst_generated/triqs_tprf/inverse_PP", "cpp2rst_generated/triqs_tprf/lattice_dyson_g0_fk", "cpp2rst_generated/triqs_tprf/lattice_dyson_g0_wk", "cpp2rst_generated/triqs_tprf/lattice_dyson_g_f", "cpp2rst_generated/triqs_tprf/lattice_dyson_g_fk", "cpp2rst_generated/triqs_tprf/lattice_dyson_g_w", "cpp2rst_generated/triqs_tprf/lattice_dyson_g_wk", "cpp2rst_generated/triqs_tprf/lindhard_chi00", "cpp2rst_generated/triqs_tprf/product", "cpp2rst_generated/triqs_tprf/product_PH", "cpp2rst_generated/triqs_tprf/product_PH_bar", "cpp2rst_generated/triqs_tprf/product_PP", "cpp2rst_generated/triqs_tprf/rho_k_from_g_wk", "cpp2rst_generated/triqs_tprf/solve_rpa_PH", "cpp2rst_generated/triqs_tprf/split_into_dynamic_wk_and_constant_k", "documentation", "faqs", "index", "install", "issues", "reference/cpp_reference", "reference/python_reference", "theory/boundary_conditions", "theory/eliashberg", "theory/linear_response", "theory/notation", "theory/rpa", "theory/single_particle_gf", "theory/vertex", "user_guide/Bethe-Salpeter Equation on the Hubbard atom", "user_guide/Lattice BSE on Hubbard atom", "user_guide/Linearized Eliashberg equation on the attractive Hubbard model", "user_guide/Mean field and RPA response of the one dimensional Hubbard model", "user_guide/Solving the linearized Eliashberg equation in the random phase approximation limit", "user_guide/Square lattice susceptibility", "user_guide/dmft_susceptibility/dmft_framework", "user_guide/dmft_susceptibility/dmft_susceptibility", "user_guide/dmft_susceptibility_dbse/calc_dft/pseudo/README", "user_guide/dmft_susceptibility_dbse/dmft_susceptibility_dbse"], "envversion": {"nbsphinx": 4, "sphinx": 62, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinx.ext.todo": 2, "sphinx.ext.viewcode": 1}, "filenames": ["ChangeLog.md", "about.rst", "cpp2rst_generated/contents.rst", "cpp2rst_generated/triqs_tprf.rst", "cpp2rst_generated/triqs_tprf/add_dynamic_and_static.rst", "cpp2rst_generated/triqs_tprf/bose.rst", "cpp2rst_generated/triqs_tprf/chi0_Tr_from_g_Tr_PH.rst", "cpp2rst_generated/triqs_tprf/chi0_from_gg2_PH.rst", "cpp2rst_generated/triqs_tprf/chi0_from_gg2_PP.rst", "cpp2rst_generated/triqs_tprf/chi0_tau_from_g_tau_PH.rst", "cpp2rst_generated/triqs_tprf/chi0_tr_from_grt_PH.rst", "cpp2rst_generated/triqs_tprf/chi0_w0r_from_grt_PH.rst", "cpp2rst_generated/triqs_tprf/chi0q_from_chi0r.rst", "cpp2rst_generated/triqs_tprf/chi0q_from_g_wk_PH.rst", "cpp2rst_generated/triqs_tprf/chi0q_sum_nu.rst", "cpp2rst_generated/triqs_tprf/chi0q_sum_nu_q.rst", "cpp2rst_generated/triqs_tprf/chi0q_sum_nu_tail_corr_PH.rst", "cpp2rst_generated/triqs_tprf/chi0r_from_chi0q.rst", "cpp2rst_generated/triqs_tprf/chi0r_from_gr_PH.rst", "cpp2rst_generated/triqs_tprf/chi0r_from_gr_PH_nompi.rst", "cpp2rst_generated/triqs_tprf/chi_from_gg2_PH.rst", "cpp2rst_generated/triqs_tprf/chi_from_gg2_PP.rst", "cpp2rst_generated/triqs_tprf/chi_tr_from_chi_wr.rst", "cpp2rst_generated/triqs_tprf/chi_w0r_from_chi_tr.rst", "cpp2rst_generated/triqs_tprf/chi_wk_from_chi_wr.rst", "cpp2rst_generated/triqs_tprf/chi_wr_from_chi_tr.rst", "cpp2rst_generated/triqs_tprf/chi_wr_from_chi_wk.rst", "cpp2rst_generated/triqs_tprf/chiq_from_chi0q_and_gamma_PH.rst", "cpp2rst_generated/triqs_tprf/chiq_sum_nu_from_chi0q_and_gamma_PH.rst", "cpp2rst_generated/triqs_tprf/chiq_sum_nu_from_chi0q_and_gamma_and_L_wn_PH.rst", "cpp2rst_generated/triqs_tprf/construct_phi_wk.rst", "cpp2rst_generated/triqs_tprf/dynamic_and_constant_to_tr.rst", "cpp2rst_generated/triqs_tprf/dynamical_screened_interaction_W.rst", "cpp2rst_generated/triqs_tprf/dynamical_screened_interaction_W_from_generalized_susceptibility.rst", "cpp2rst_generated/triqs_tprf/eliashberg_product.rst", "cpp2rst_generated/triqs_tprf/eliashberg_product_fft.rst", "cpp2rst_generated/triqs_tprf/fermi.rst", "cpp2rst_generated/triqs_tprf/fock_sigma.rst", "cpp2rst_generated/triqs_tprf/fourier_Tk_to_Tr.rst", "cpp2rst_generated/triqs_tprf/fourier_Tr_to_Tk.rst", "cpp2rst_generated/triqs_tprf/fourier_fk_to_fr.rst", "cpp2rst_generated/triqs_tprf/fourier_fr_to_fk.rst", "cpp2rst_generated/triqs_tprf/fourier_tr_to_wr.rst", "cpp2rst_generated/triqs_tprf/fourier_wk_to_wr.rst", "cpp2rst_generated/triqs_tprf/fourier_wr_to_tr.rst", "cpp2rst_generated/triqs_tprf/fourier_wr_to_wk.rst", "cpp2rst_generated/triqs_tprf/g0w_dynamic_sigma.rst", "cpp2rst_generated/triqs_tprf/g0w_sigma.rst", "cpp2rst_generated/triqs_tprf/gw_dynamic_sigma.rst", "cpp2rst_generated/triqs_tprf/gw_sigma.rst", "cpp2rst_generated/triqs_tprf/hartree_sigma.rst", "cpp2rst_generated/triqs_tprf/identity.rst", "cpp2rst_generated/triqs_tprf/identity_PH.rst", "cpp2rst_generated/triqs_tprf/identity_PH_bar.rst", "cpp2rst_generated/triqs_tprf/identity_PP.rst", "cpp2rst_generated/triqs_tprf/inverse.rst", "cpp2rst_generated/triqs_tprf/inverse_PH.rst", "cpp2rst_generated/triqs_tprf/inverse_PH_bar.rst", "cpp2rst_generated/triqs_tprf/inverse_PP.rst", "cpp2rst_generated/triqs_tprf/lattice_dyson_g0_fk.rst", "cpp2rst_generated/triqs_tprf/lattice_dyson_g0_wk.rst", "cpp2rst_generated/triqs_tprf/lattice_dyson_g_f.rst", "cpp2rst_generated/triqs_tprf/lattice_dyson_g_fk.rst", "cpp2rst_generated/triqs_tprf/lattice_dyson_g_w.rst", "cpp2rst_generated/triqs_tprf/lattice_dyson_g_wk.rst", "cpp2rst_generated/triqs_tprf/lindhard_chi00.rst", "cpp2rst_generated/triqs_tprf/product.rst", "cpp2rst_generated/triqs_tprf/product_PH.rst", "cpp2rst_generated/triqs_tprf/product_PH_bar.rst", "cpp2rst_generated/triqs_tprf/product_PP.rst", "cpp2rst_generated/triqs_tprf/rho_k_from_g_wk.rst", "cpp2rst_generated/triqs_tprf/solve_rpa_PH.rst", "cpp2rst_generated/triqs_tprf/split_into_dynamic_wk_and_constant_k.rst", "documentation.rst", "faqs.rst", "index.rst", "install.rst", "issues.rst", "reference/cpp_reference.rst", "reference/python_reference.rst", "theory/boundary_conditions.rst", "theory/eliashberg.rst", "theory/linear_response.rst", "theory/notation.rst", "theory/rpa.rst", "theory/single_particle_gf.rst", "theory/vertex.rst", "user_guide/Bethe-Salpeter Equation on the Hubbard atom.ipynb", "user_guide/Lattice BSE on Hubbard atom.ipynb", "user_guide/Linearized Eliashberg equation on the attractive Hubbard model.ipynb", "user_guide/Mean field and RPA response of the one dimensional Hubbard model.ipynb", "user_guide/Solving the linearized Eliashberg equation in the random phase approximation limit.ipynb", "user_guide/Square lattice susceptibility.ipynb", "user_guide/dmft_susceptibility/dmft_framework.rst", "user_guide/dmft_susceptibility/dmft_susceptibility.rst", "user_guide/dmft_susceptibility_dbse/calc_dft/pseudo/README.md", "user_guide/dmft_susceptibility_dbse/dmft_susceptibility_dbse.rst"], "indexentries": {}, "objects": {"triqs_tprf.ParameterCollection": [[79, 0, 1, "", "ParameterCollection"], [79, 0, 1, "", "ParameterCollections"], [79, 2, 1, "", "parameter_scan"]], "triqs_tprf.ParameterCollection.ParameterCollection": [[79, 1, 1, "", "alter"], [79, 1, 1, "", "convert_keys_from_string_to_python"], [79, 1, 1, "", "copy"]], "triqs_tprf.analytic_hubbard_atom": [[79, 2, 1, "", "analytic_hubbard_atom"]], "triqs_tprf.bse": [[79, 2, 1, "", "get_chi0_nk_at_specific_w"], [79, 2, 1, "", "get_chi0_wnk"], [79, 2, 1, "", "solve_lattice_bse"], [79, 2, 1, "", "solve_lattice_bse_at_specific_w"], [79, 2, 1, "", "solve_local_bse"]], "triqs_tprf.chi_from_gg2": [[79, 2, 1, "", "chi0_from_gg2_PH"], [79, 2, 1, "", "chi0_from_gg2_PP"], [79, 2, 1, "", "chi_from_gg2_PH"], [79, 2, 1, "", "chi_from_gg2_PP"]], "triqs_tprf.dbse": [[79, 2, 1, "", "impurity_reducible_vertex_F"], [79, 2, 1, "", "solve_lattice_dbse"]], "triqs_tprf.eliashberg": [[79, 2, 1, "", "construct_gamma_singlet_rpa"], [79, 2, 1, "", "construct_gamma_triplet_rpa"], [79, 2, 1, "", "implicitly_restarted_arnoldi_method"], [79, 2, 1, "", "power_method_LR"], [79, 2, 1, "", "preprocess_gamma_for_fft"], [79, 2, 1, "", "semi_random_initial_delta"], [79, 2, 1, "", "solve_eliashberg"]], "triqs_tprf.gw": [[79, 2, 1, "", "bubble_PI_wk"], [79, 2, 1, "", "g0w_sigma"], [79, 2, 1, "", "gw_sigma"]], "triqs_tprf.gw_solver": [[79, 0, 1, "", "GWSolver"]], "triqs_tprf.hf_response": [[79, 0, 1, "", "HartreeFockResponse"], [79, 0, 1, "", "HartreeResponse"]], "triqs_tprf.hf_solver": [[79, 0, 1, "", "HartreeFockSolver"], [79, 0, 1, "", "HartreeSolver"]], "triqs_tprf.hf_solver.HartreeFockSolver": [[79, 1, 1, "", "mat2vec"], [79, 1, 1, "", "solve_iter"], [79, 1, 1, "", "solve_newton"], [79, 1, 1, "", "solve_newton_mu"], [79, 1, 1, "", "vec2mat"]], "triqs_tprf.hf_solver.HartreeSolver": [[79, 1, 1, "", "mat2vec"], [79, 1, 1, "", "vec2mat"]], "triqs_tprf.lattice": [[79, 2, 1, "", "dynamical_screened_interaction_W"], [79, 2, 1, "", "dynamical_screened_interaction_W_from_generalized_susceptibility"], [79, 2, 1, "", "lattice_dyson_g0_fk"], [79, 2, 1, "", "lattice_dyson_g0_wk"], [79, 2, 1, "", "lattice_dyson_g_f"], [79, 2, 1, "", "lattice_dyson_g_fk"], [79, 2, 1, "", "lattice_dyson_g_w"], [79, 2, 1, "", "lattice_dyson_g_wk"], [79, 2, 1, "", "lindhard_chi00"], [79, 2, 1, "", "solve_rpa_PH"]], "triqs_tprf.lattice_utils": [[79, 2, 1, "", "chi_contraction"], [79, 2, 1, "", "imtime_bubble_chi0_wk"], [79, 2, 1, "", "k_space_path"]], "triqs_tprf.linalg": [[79, 2, 1, "", "identity_PH"], [79, 2, 1, "", "identity_PH_bar"], [79, 2, 1, "", "identity_PP"], [79, 2, 1, "", "inverse_PH"], [79, 2, 1, "", "inverse_PH_bar"], [79, 2, 1, "", "inverse_PP"], [79, 2, 1, "", "product_PH"], [79, 2, 1, "", "product_PH_bar"], [79, 2, 1, "", "product_PP"]], "triqs_tprf.rpa_tensor": [[79, 2, 1, "", "kanamori_quartic_tensor"]], "triqs_tprf.super_lattice": [[79, 0, 1, "", "TBSuperLattice"]], "triqs_tprf.super_lattice.TBSuperLattice": [[79, 1, 1, "", "change_coordinates_L_to_SL"], [79, 1, 1, "", "change_coordinates_SL_to_L"], [79, 1, 1, "", "cluster_sites"], [79, 1, 1, "", "fold"], [79, 1, 1, "", "pack_index_site_orbital"], [79, 1, 1, "", "unpack_index_site_orbital"]], "triqs_tprf.tight_binding": [[79, 0, 1, "", "TBLattice"], [79, 2, 1, "", "create_square_lattice"]], "triqs_tprf.tight_binding.TBLattice": [[79, 1, 1, "", "dispersion"], [79, 1, 1, "", "fourier"], [79, 1, 1, "", "get_kmesh"], [79, 1, 1, "", "get_rmesh"], [79, 1, 1, "", "lattice_to_real_coordinates"], [79, 3, 1, "", "n_orbitals"], [79, 3, 1, "", "ndim"], [79, 3, 1, "", "orbital_names"], [79, 3, 1, "", "orbital_positions"], [79, 3, 1, "", "units"]], "triqs_tprf.wannier90": [[79, 2, 1, "", "parse_band_structure_from_wannier90_band_dat"], [79, 2, 1, "", "parse_hopping_from_wannier90_hr_dat"], [79, 2, 1, "", "parse_lattice_vectors_from_wannier90_wout"], [79, 2, 1, "", "parse_reciprocal_lattice_vectors_from_wannier90_wout"]]}, "objnames": {"0": ["py", "class", "Python class"], "1": ["py", "method", "Python method"], "2": ["py", "function", "Python function"], "3": ["py", "property", "Python property"]}, "objtypes": {"0": "py:class", "1": "py:method", "2": "py:function", "3": "py:property"}, "terms": {"": [1, 4, 6, 7, 8, 9, 10, 11, 13, 18, 19, 20, 21, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 59, 60, 61, 62, 63, 64, 65, 70, 72, 73, 81, 83, 84, 86, 88, 89, 90, 91, 92, 93, 94, 96], "0": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96], "00": [65, 79, 90, 92], "0000": 84, "000000": 94, "0001": 84, "0006233689973519351": 90, "00062337": 90, "000623370447305363": 90, "0006233708712780279": 90, "000623377300450557": 90, "00062338": 90, "0010": 84, "0011": 84, "00803835": 90, "008038350017700799": 90, "008038350082891664": 90, "008038353137584412": 90, "00803835402874193": 90, "00928508742243029": 90, "009285087431502552": 90, "00928509": 90, "009285091093955294": 90, "009285091325941902": 90, "00989": 87, "01": [91, 92], "0100": 84, "0101": 84, "0110": 84, "0111": 84, "01311808": 90, "01563585": 90, "01567305": 90, "0182822": 90, "02": 90, "03": [90, 92], "03776486": 90, "0380558": 90, "03d": [94, 96], "04": [76, 90], "04030009": 90, "04102537": 90, "04983329": 90, "05": [79, 92, 94], "05132797": 90, "05157": 96, "05174012": 90, "0517401229191": 90, "05174012291931889": 90, "05385591": 90, "05649209": 90, "05974364": 90, "05986393": 90, "06": [90, 92], "06554954": 90, "06566533e": 90, "06603175": 90, "06701196": 90, "06777702": 90, "07266601": 90, "07315558": 90, "07412951": 90, "075159": 86, "07632445": 90, "07709171": 90, "08126425": 90, "08361562": 90, "09": 79, "09080281": 90, "09252033": 90, "09540358": 90, "09822362": 90, "0_": 79, "0f": 92, "0j": 90, "0x111ae2e10": 90, "1": [4, 5, 14, 15, 16, 22, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 42, 43, 44, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 71, 76, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96], "10": [79, 81, 87, 89, 90, 91, 92, 93, 94, 96], "100": [79, 90, 91, 92, 96], "1000": [84, 89], "10000": [93, 94], "100000": 79, "1001": 84, "1010": 84, "1011": 84, "1024": [91, 92], "1038736": 90, "104504": [81, 84], "10468123": 90, "10646747": 90, "11": [87, 90, 91, 92], "1100": 84, "1101": 84, "11076694": 90, "1110": 84, "1111": 84, "11171870e": 90, "11254103e": 90, "114500689705": 90, "11450068970500865": 90, "117": 81, "12": [76, 87, 90, 91, 92, 94], "12056333": 90, "125120": 96, "12686976e": 90, "13": [87, 90, 91, 92], "14": [90, 91, 92], "14793390983942026": 90, "14793391": 90, "149": 81, "15": [90, 91, 92, 94], "16": [90, 92, 93, 94, 96], "160": 87, "162159026185": 90, "16215902618552902": 90, "162159026186": 90, "16215903": 90, "16401061": 90, "16401061009292597": 90, "16401061042857704": 90, "17": [90, 92], "17501856": 90, "17726125649": 90, "1772612564906984": 90, "17726126": 90, "18": [87, 90], "1805": 87, "18258079": 90, "18258079328307353": 90, "18582577e": 90, "1965": 81, "1d": 79, "1e": [79, 90, 93, 96], "1e9": 94, "2": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 96], "20": [87, 94, 96], "200": [91, 92], "2003": 81, "2004": [81, 84], "2006": 81, "2013": 81, "2014": 94, "2016": [81, 86], "2018": [79, 90], "2019": [81, 92, 96], "20629071e": 90, "22": 76, "229001379409": 90, "22900137941001733": 90, "22900138": 90, "2306": 96, "234": 88, "235105": 94, "235107": 79, "237": 81, "248": 88, "25": [87, 90, 94], "25150193e": 90, "256": 90, "29125322e": 90, "296": 81, "2c": 90, "2d": [79, 93], "2e": 94, "2f": [90, 92], "2j": [81, 84], "2n": [83, 85], "2n_": [34, 35, 81], "2nd": 23, "2t": 90, "2to3": 0, "2u": [81, 84, 89], "3": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 96], "30": [92, 96], "31308159e": 90, "32": [89, 91, 92], "33000857e": 90, "337": 79, "3472": 94, "3479": 94, "37789780e": 90, "387": 81, "39": 90, "4": [30, 32, 33, 47, 64, 65, 71, 72, 76, 79, 81, 83, 84, 86, 87, 88, 89, 90, 92, 94, 96], "40": [87, 94, 96], "400": [90, 93, 94], "4000": [93, 94], "41": 89, "41473132": 90, "41535998": 90, "43": 90, "43270332": 90, "43419406": 90, "45005": 81, "4d": 96, "4t": 92, "5": [47, 64, 79, 81, 87, 88, 89, 90, 91, 92, 93, 94, 96], "50": [79, 89], "500": 90, "52372064e": 90, "5861047169392135": 88, "5e6": 94, "6": [47, 79, 81, 87, 88, 89, 90, 91, 92, 94, 96], "60": 92, "636154": 92, "67458502e": 90, "69": [81, 84], "7": [81, 87, 88, 89, 90, 91, 92], "72": 96, "75": [87, 92], "77228579e": 90, "77547464e": 90, "8": [81, 87, 88, 89, 90, 91, 92, 94, 96], "80": 87, "800": 90, "85918250e": 90, "8e6": 93, "9": [81, 87, 88, 89, 90, 91, 92], "90": 94, "91": 81, "94": 86, "98": 79, "992": 88, "9999705817306739": 89, "A": [51, 52, 53, 54, 66, 67, 68, 69, 71, 74, 76, 79, 81, 84, 89, 90, 92, 93], "And": [84, 91, 92], "As": 80, "At": 81, "But": [81, 84, 91], "By": [65, 81, 88, 91], "For": [75, 76, 79, 80, 81, 84, 87, 88, 89, 91, 92, 93, 94], "If": [74, 77, 79, 83, 84, 89, 96], "In": [1, 30, 76, 77, 79, 80, 81, 82, 83, 84, 86, 89, 91, 92, 94, 96], "It": [0, 30, 81, 85, 89], "Its": 79, "No": 90, "Not": 93, "ON": 76, "On": 73, "One": [79, 89], "Or": 84, "The": [0, 1, 5, 30, 31, 32, 33, 36, 49, 55, 56, 57, 58, 65, 66, 67, 68, 69, 76, 79, 80, 81, 82, 83, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 96], "Then": 89, "There": 88, "These": [81, 83, 96], "To": [76, 80, 84, 87, 89, 92, 94], "With": [79, 84, 87, 88, 89, 92], "_": [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 46, 47, 49, 51, 52, 53, 54, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 79, 80, 81, 82, 83, 84, 86, 89, 90, 92, 94, 96], "_0": [83, 84, 86], "_1": 84, "__repr__": 90, "_band": 79, "_c": [83, 86], "_hr": 79, "_index": 79, "_j": 89, "_m": [79, 94], "_n": 85, "_nk_": 96, "a_": [51, 52, 53, 54, 66, 67, 68, 69, 79], "aabb": [46, 47], "ab": [4, 7, 8, 9, 20, 21, 35, 37, 46, 47, 48, 49, 50, 66, 67, 68, 69, 70, 79, 80, 86, 87, 88, 90, 92, 93], "abab": 79, "abbrevi": 83, "abcd": [32, 33, 37, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 66, 67, 68, 69, 72, 79, 86, 92, 94, 96], "abef": [32, 33, 79], "abid": 81, "about": 77, "abov": [76, 84, 86, 87, 91, 93], "abrikosov": 81, "absolut": 79, "ac": 86, "access": [79, 89], "accident": 92, "accord": 83, "account": [84, 89, 91], "accuraci": [79, 94], "acdb": [37, 49], "achiev": 86, "action": 81, "ad": [0, 80], "adapt": 88, "add": [0, 4, 35, 79], "add_dynamic_and_stat": 3, "addit": [65, 76, 80, 89, 90, 92], "addition": 89, "adher": 0, "adjust": 0, "advantag": [0, 35, 84], "affect": 79, "afm": 89, "after": [76, 79, 83], "against": 0, "agreement": 94, "aim": 75, "al": [46, 47, 79, 81, 84, 94], "alexand": 0, "algebra": 73, "algorithm": 79, "alias": 2, "align": 91, "all": [0, 30, 76, 77, 79, 80, 81, 84, 85, 87, 89, 91, 92, 96], "alloc": [51, 52, 53, 54, 55, 56, 57, 58, 66, 67, 68, 69, 79], "allow": [77, 81, 84, 91], "along": [79, 92, 94], "alpha": [51, 52, 53, 54, 55, 56, 57, 58, 66, 67, 68, 69, 79, 81, 84, 87], "alpha_": 84, "alreadi": [84, 96], "also": [0, 1, 76, 81, 87, 88, 89, 91, 92, 94, 96], "alter": [79, 89], "altern": 92, "amd": 94, "amp": [90, 91, 92], "amput": [86, 96], "an": [0, 61, 62, 63, 64, 65, 73, 76, 79, 80, 81, 84, 85, 87, 88, 89, 92, 94, 96], "ana": 87, "anaconda": 0, "analys": 86, "analyt": [0, 65, 73, 81, 88, 92], "analytic_hubbard_atom": [73, 79, 87, 88], "angular": [79, 89], "ani": [1, 76, 79, 84, 86, 89, 92], "annihil": [80, 89], "anomal": [79, 80], "anti": [73, 82, 83, 85], "anticommut": 82, "antiferromagnet": 89, "antisymmetr": 73, "anyth": 90, "app4triq": 0, "appear": 86, "append": [92, 93], "appli": [73, 79, 83], "applic": [0, 1, 73, 76, 77, 82], "approach": [82, 87, 94], "approx": [30, 81, 84, 89, 90, 91, 92, 94], "approxim": [30, 71, 73, 75, 87, 88, 89], "apprxim": 92, "appyl": 94, "apt": 76, "ar": [0, 30, 46, 47, 65, 66, 67, 68, 69, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 94, 96], "arang": 92, "arch": 79, "archiv": 79, "arg": [79, 90], "argument": [79, 93, 94], "arnoldi": [0, 79], "arrai": [47, 79, 86, 87, 90, 91], "array_const_view": 79, "array_contiguous_view": [30, 71], "arriv": 80, "arxiv": [87, 96], "ask": 73, "assert": 92, "associ": [79, 81, 86], "assum": [76, 80], "assur": 79, "atleast": 79, "atom": [73, 88], "attract": 73, "attribut": 79, "author": 90, "automat": 79, "avail": [76, 93, 94, 96], "avoid": [0, 81], "axi": [65, 87, 92, 96], "ayral": 86, "b": [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 34, 35, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 79, 80, 81, 82, 83, 84, 85, 86, 89, 90, 92, 93, 94], "b_": [66, 67, 68, 69, 79], "ba": [20, 21, 37, 49, 50, 79], "back": [49, 79, 92], "balatski": 81, "band": [79, 81, 91, 94, 96], "bandwidth": 92, "bar": [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 34, 35, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 53, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 73, 79, 80, 81, 82, 83, 84, 85, 94], "bardeen": 81, "bare": [32, 33, 46, 47, 71, 73, 79, 81, 84, 86, 88, 91], "base": [0, 75, 79, 84, 93, 94, 96], "basi": [1, 79], "basic": 75, "bc": [7, 8, 9, 73, 79, 80, 86], "bcast": 94, "bd": [84, 86], "becaus": [79, 81, 84, 89], "beceom": 81, "becom": [80, 81, 86], "been": [0, 1], "befor": [79, 89, 91], "begin": [81, 84, 86, 91], "beht": 94, "below": [0, 76, 81, 84, 92, 93, 94], "benchmark": 89, "beta": [7, 8, 9, 11, 13, 14, 15, 16, 18, 19, 20, 21, 23, 30, 34, 35, 37, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 65, 66, 67, 68, 69, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "beta_": [81, 84], "beth": [27, 28, 29, 73, 75, 81, 84, 92], "better": 87, "between": [0, 73, 79, 81, 82, 89], "bicker": 81, "big": [35, 71, 79, 80, 84, 86, 90, 92], "biggest": 79, "bind": [73, 88], "bipartit": 89, "bj": [46, 47, 65, 79], "bl": [79, 88], "block": [79, 87], "block_iw_ab_to_matrix_valu": 87, "block_list": 87, "blockgf": [87, 93], "blockgf_data": 93, "bodi": 81, "bool": 79, "bose": 3, "boson": [0, 12, 13, 14, 15, 16, 17, 18, 19, 30, 65, 79, 80, 81, 82, 83, 85, 87, 89, 92, 94], "both": [35, 76, 81, 84, 86, 96], "boundari": [73, 79, 89], "box": [90, 91, 92], "bracket": [0, 79], "braket": 89, "bravai": 79, "bravaislattic": [79, 88], "break": [81, 93], "brentq": 90, "brillouin": [79, 89, 91, 92, 94], "brillouin_zon": 79, "brillouinzon": [79, 88], "broaden": [46, 47, 59, 61, 62, 65, 79], "broke": 0, "brute": 82, "brzone": [46, 47, 79], "bse": [73, 79, 81, 92, 94, 96], "bubbl": [6, 7, 8, 9, 10, 11, 13, 18, 19, 27, 28, 29, 32, 65, 71, 73, 79, 81, 84, 90, 91, 92, 94, 96], "bubble_pi_wk": [73, 79], "bug": [0, 1, 77], "bugfix": 0, "build": [0, 76, 77, 79, 91, 92], "bz": [79, 88, 92], "bzmesh": 88, "c": [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 34, 35, 39, 51, 52, 53, 54, 55, 56, 57, 58, 65, 66, 67, 68, 69, 71, 75, 76, 79, 80, 81, 82, 83, 84, 85, 86, 89, 90, 92, 94], "c_": [79, 83, 85, 89, 90, 92], "c_dag": 90, "ca": 86, "calc_chi": 96, "calc_dft": 96, "calc_g2": 96, "calc_sc_dmft": 96, "calc_tri": 96, "calcuat": 93, "calcul": [0, 23, 32, 33, 35, 37, 46, 47, 48, 49, 50, 65, 73, 76, 79, 81, 87, 88, 89, 91, 96], "calculu": [65, 79], "call": [76, 79, 81, 83, 89, 91, 92, 93], "callabl": 79, "can": [0, 30, 74, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 94], "cancel": 84, "cannot": 0, "care": 65, "carefulli": 86, "carlo": [0, 94, 96], "carri": 84, "case": [65, 77, 80, 81, 84, 87, 89, 90, 91, 92], "cast": [55, 56, 57, 58, 66, 67, 68, 69, 79], "caution": 79, "cc": 84, "ccc": 84, "cd": [35, 37, 48, 49, 50, 76, 79, 80, 84, 90, 92], "cdot": [7, 8, 9, 13, 18, 19, 20, 21, 32, 33, 59, 60, 61, 62, 63, 64, 65, 79, 85, 86, 92], "cell": 79, "central": 82, "cf": 75, "ch": [51, 52, 53, 54, 55, 66, 67, 68, 69, 90], "chang": [0, 75, 79, 89], "change_coordinates_l_to_sl": 79, "change_coordinates_sl_to_l": 79, "changelog": 75, "channel": [6, 7, 8, 9, 10, 11, 13, 18, 19, 20, 21, 30, 34, 35, 51, 52, 53, 54, 55, 56, 57, 58, 65, 66, 67, 68, 69, 71, 73, 75, 79, 81, 84, 87, 92, 94], "channel_t": [51, 55, 66], "chapter": 86, "charact": 89, "charg": 84, "check": 0, "checkout": [76, 89], "chemic": [0, 46, 47, 59, 60, 61, 62, 63, 64, 65, 79, 89], "chi": [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 27, 28, 29, 30, 33, 65, 71, 72, 73, 79, 81, 82, 84, 86, 90, 91, 92, 94, 96], "chi0": [7, 8, 9, 71, 79], "chi00_wk": [84, 90, 92], "chi00_wk_analyt": 92, "chi00_wk_wo_spin": 84, "chi0_from_gg2_ph": [3, 73, 78, 79, 87, 94], "chi0_from_gg2_pp": [3, 73, 78, 79], "chi0_k": 79, "chi0_kw": [79, 94, 96], "chi0_m": [79, 87, 94], "chi0_nk": 79, "chi0_q0": 90, "chi0_q0_integr": 90, "chi0_q0_integral_kspac": 90, "chi0_q0_integral_kspace_matrix": 90, "chi0_q0_ref": 90, "chi0_q0_ref2": 90, "chi0_tau_from_g_tau_ph": 3, "chi0_tr_from_g_tr_ph": 3, "chi0_tr_from_grt_ph": [3, 78, 91], "chi0_vec": 90, "chi0_w0r_from_grt_ph": [3, 78, 90, 92], "chi0_wk": [88, 91], "chi0_wnk": [27, 28, 29, 79], "chi0_wnn": 79, "chi0_wr": 88, "chi0q_from_chi0r": [3, 78, 88], "chi0q_from_g_wk_ph": [3, 78], "chi0q_sum_nu": [3, 78], "chi0q_sum_nu_q": [3, 78], "chi0q_sum_nu_tail_corr_ph": [3, 78], "chi0r_from_chi0q": [3, 78], "chi0r_from_gr_ph": [3, 78, 88], "chi0r_from_gr_ph_nompi": [3, 78], "chi2_tau_t": 9, "chi_": [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 33, 71, 72, 79, 84, 86, 94, 96], "chi_0": [73, 84, 86, 88, 90, 91, 94], "chi_c": 84, "chi_const_k": 72, "chi_contract": [73, 79], "chi_d_wk": 91, "chi_dtr_t": 31, "chi_dwk_vt": 31, "chi_dyn_wk": 72, "chi_fk": [33, 79], "chi_fk_cvt": [32, 33, 46, 47], "chi_fk_t": [32, 33, 65, 71], "chi_fk_vt": 71, "chi_from_gg2": [78, 79, 87, 94], "chi_from_gg2_ph": [3, 73, 78, 79], "chi_from_gg2_pp": [3, 73, 78, 79], "chi_imfreq": 78, "chi_imp_w": [79, 96], "chi_imtim": 78, "chi_interp": 92, "chi_k": 79, "chi_k_cvt": [32, 33, 37, 46, 47, 49, 50, 79], "chi_k_t": 72, "chi_k_vt": 31, "chi_kw": [79, 94], "chi_kw_bs": 96, "chi_kw_dbs": 96, "chi_kw_t": [28, 29], "chi_kwnn_t": 27, "chi_m": [79, 87, 88, 94], "chi_m_stat": [79, 87], "chi_m_wk": 91, "chi_nn_cvt": 29, "chi_ph_magnet": 87, "chi_q0": 90, "chi_q0_ref": 90, "chi_r_t": 31, "chi_r_vt": 35, "chi_szsz": 92, "chi_szsz_contract": 92, "chi_szsz_q0": 90, "chi_szsz_wk": 90, "chi_tk_t": 39, "chi_tr": [22, 23, 25, 39], "chi_tr_cvt": [23, 25, 39, 48], "chi_tr_from_chi_wr": [3, 78], "chi_tr_t": [6, 10, 22, 31], "chi_tr_vt": 35, "chi_vec": 90, "chi_w": 88, "chi_w0r_from_chi_tr": [3, 78], "chi_w_t": 15, "chi_wk": [26, 33, 72, 84, 88, 90, 92], "chi_wk_cvt": [26, 32, 33, 49, 72], "chi_wk_from_chi_wr": [3, 78, 90, 91, 92], "chi_wk_t": [14, 16, 24, 30, 32, 33, 65, 71, 72], "chi_wk_vec": 92, "chi_wk_vt": [30, 31, 34, 71], "chi_wnk": [14, 15, 16, 17], "chi_wnk_cvt": [14, 15, 16, 17, 27, 28, 29], "chi_wnk_t": [12, 13], "chi_wnn": 79, "chi_wnn_cvt": [27, 28, 29], "chi_wnr": 12, "chi_wnr_cvt": 12, "chi_wnr_t": [17, 18, 19], "chi_wr": [22, 24, 26], "chi_wr_cvt": [22, 24], "chi_wr_from_chi_tr": [3, 78, 91], "chi_wr_from_chi_wk": [3, 78], "chi_wr_t": [11, 23, 25, 26], "chiq_from_chi0q_and_gamma_ph": [3, 78, 88], "chiq_sum_nu": 88, "chiq_sum_nu_from_chi0q_and_gamma_and_l_wn_ph": 3, "chiq_sum_nu_from_chi0q_and_gamma_ph": [3, 78], "chiq_sum_nu_q": 88, "choic": [83, 86], "choosen": 86, "cite": [79, 96], "class": [79, 89, 90, 92, 93, 94], "classifi": 81, "clone": 76, "close": [86, 89], "cluster": [0, 79], "cluster_sit": 79, "cmake": 77, "cmakecach": 77, "cmakelist": 77, "cmap": 92, "co": 90, "code": [76, 84], "coeffici": 85, "collect": [73, 83, 86, 87], "colorbar": [87, 92], "com": [76, 77], "combin": [81, 86, 89, 91, 96], "come": [87, 94], "comfort": 89, "command": [76, 77], "common": [93, 94, 96], "commonli": 83, "commut": [80, 90], "compar": [84, 87, 90, 94], "comparison": 96, "compil": [0, 77], "complet": 93, "complex": [0, 30, 47, 65, 71, 79, 81, 89, 91, 92], "compon": [0, 35, 79, 82, 83, 86, 87, 89, 92, 96], "compress": 86, "comput": [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 30, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 75, 79, 82, 87, 88, 92, 93, 94, 96], "computation": 92, "computationali": 81, "conclud": 94, "conda": [0, 76], "condens": 81, "condit": [0, 73], "conf": 0, "configur": 76, "conjuat": 79, "conjug": [79, 80, 81], "connect": [83, 86, 89], "conserv": [83, 86], "consid": [79, 80, 81, 83, 86, 89, 90], "consist": [0, 79, 81, 86, 96], "consisten": 93, "constant": [31, 72, 79, 81, 84, 89], "constrain": 81, "constraint": [83, 86, 91], "construct": [0, 30, 46, 47, 51, 52, 53, 54, 59, 60, 61, 62, 63, 64, 79, 84, 87, 88, 89, 92, 93, 96], "construct_gamma__rpa": 30, "construct_gamma_singlet_rpa": [30, 73, 79, 91], "construct_gamma_triplet_rpa": [73, 79], "construct_phi_wk": [3, 78, 91], "constructor": 0, "contact": 74, "contain": [0, 76, 79], "continu": [65, 90], "contiuat": 0, "contour": 92, "contract": [79, 84, 86, 92], "contrast": 84, "contribut": [1, 65], "contributor": [0, 1], "converg": [0, 31, 72, 79, 93, 94, 96], "convert": 79, "convert_keys_from_string_to_python": 79, "converters_worm": 96, "convinc": 89, "convolut": [0, 13, 35, 81], "cooper": 81, "coordin": [79, 92], "copi": [79, 88, 90, 92, 93, 94], "core": [89, 95], "correct": [0, 14, 15, 16, 84, 89, 91, 95, 96], "correl": [81, 83, 96], "correspond": [79, 81, 83, 84, 89, 92, 94], "cosh": [65, 79, 90], "coshm": 90, "could": [83, 84], "count": 89, "coupl": 79, "cpp2py": 0, "creat": [76, 79, 89, 91, 92], "create_square_lattic": [73, 79, 89, 91], "create_zero": 79, "creation": [80, 89], "criterion": 79, "critic": 81, "cross": [73, 96], "crude": 89, "cthyb": [87, 88, 93, 94, 96], "cumsum": 90, "current": 81, "curv": 94, "cut": 96, "cyclic": [79, 80, 85], "d": [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 34, 35, 39, 51, 52, 53, 54, 55, 56, 57, 58, 65, 66, 67, 68, 69, 71, 79, 80, 81, 82, 83, 84, 85, 86, 87, 90, 91, 92, 93, 94], "d1": 79, "d_": 89, "da": [7, 8, 9, 79], "dagger": [46, 47, 79, 80, 83, 84, 85, 89, 90], "dagger_": [46, 47, 65, 79, 83, 85, 89, 90, 92], "dat": [79, 96], "data": [79, 87, 88, 89, 90, 92, 96], "data_b_": 94, "data_b_0": 94, "data_bse_nwf": 94, "data_bse_nwf_": 96, "data_chi": 96, "data_g2": [94, 96], "data_sc": [93, 96], "data_tri": 96, "db": 94, "dbse": [79, 96], "dbuild_document": 76, "dbuild_test": 76, "dc": [20, 21, 37, 49, 79, 86], "dcmake_build_typ": 76, "dcmake_install_prefix": 76, "dcomplex": 79, "de": 90, "debian": 0, "debug": 76, "decoupl": 84, "dedic": 92, "dedict": 92, "deepcopi": 93, "def": [87, 90, 92, 93, 96], "default": [79, 91], "defin": [0, 79, 81, 83, 84, 85, 86, 89, 92], "definit": [81, 85], "definiton": 81, "defmatrix": 90, "degener": [65, 92], "degre": 81, "del": 94, "delta": [34, 35, 46, 47, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 65, 66, 67, 68, 69, 79, 81, 84, 86, 87, 89, 90, 91], "delta_": [7, 8, 20, 21, 46, 47, 51, 52, 53, 54, 65, 79, 80, 81, 83, 84, 85, 86, 94], "delta_wk": [34, 35], "deltas_freq_even_mom_even": 91, "deltas_freq_odd_mom_odd": 91, "denot": [81, 83, 85, 86, 92], "densiti": [0, 30, 37, 49, 50, 70, 79, 81, 82, 90, 93], "depend": [0, 30, 32, 33, 51, 52, 53, 54, 55, 56, 57, 58, 66, 67, 68, 69, 73, 79, 80, 81, 82, 83, 85, 86, 87, 88, 92, 94], "depr": 0, "deriv": [73, 80, 82, 83, 84, 89, 94], "describ": [79, 83, 89], "descript": 0, "desir": 79, "destroi": 89, "detail": [0, 73, 79, 83, 89, 92, 94, 96], "determin": [81, 84, 89, 94, 96], "determinig": [51, 52, 53, 54, 79], "develop": 1, "deviat": 87, "df": 90, "df_ref": 90, "dfdm": 90, "dg_l": 93, "di": [65, 79], "diag": [90, 92, 93, 96], "diagon": [46, 47, 65, 79, 81, 87, 96], "diagram": [65, 79, 81, 89, 92], "diamond": 92, "dict": [79, 93, 94], "dict_kei": 79, "dictat": 81, "dictionari": [79, 92], "dictionnari": 79, "diff": 88, "diff_vec": 87, "differ": [75, 79, 81, 82, 84, 85, 86, 87, 94, 96], "dimens": [79, 89], "dimension": [79, 92], "dirac": 36, "direct": [86, 94], "directli": [77, 86, 94], "directori": [76, 77], "disabl": 76, "disconnect": [83, 96], "discontinu": 80, "discret": [46, 47, 59, 60, 61, 62, 63, 64, 65, 79], "disp": 90, "dispers": [46, 47, 59, 60, 61, 62, 63, 64, 65, 79, 81, 88, 89, 90, 91, 93, 96], "displai": 89, "diss": 83, "dist": 79, "distanc": 79, "distribut": [5, 36, 76, 92], "diverg": [81, 89], "divis": 0, "dk": 90, "dlr": 1, "dlr_imfreq": [60, 79], "dm": [93, 94], "dmft": [0, 73, 79, 96], "dmft_iter": 93, "dmft_self_consistent_step": 93, "dmft_susceptibility_dbs": 96, "dn": 87, "do": [0, 81, 84, 87, 89, 90, 91, 92, 93, 94], "doc": [79, 96], "docker": 0, "document": [1, 4, 31, 32, 33, 39, 46, 47, 49, 60, 62, 64, 65, 71, 75, 76, 84, 89, 92], "doe": 79, "domain": 88, "domain_pt": 0, "domin": 0, "don": [84, 91], "done": [1, 79, 81, 86, 87, 88, 94], "doption1": 76, "doption2": 76, "dot": 79, "doubl": [5, 30, 36, 46, 47, 59, 60, 61, 62, 63, 64, 65, 71, 79], "doublecount": 81, "doubli": 89, "down": [81, 83], "downarrow": [79, 84, 87, 89, 90, 92, 93, 94], "download": [76, 93, 95], "draft": 81, "drastic": 96, "dress": 83, "dtype": [87, 91, 92], "dual": [29, 73], "due": [81, 83, 96], "dumitrescu": [0, 1], "dure": 77, "dylan": 0, "dyn": [49, 72, 79], "dynam": [4, 31, 32, 33, 35, 46, 47, 48, 49, 72, 79, 94, 96], "dynamic_and_constant_to_tr": [3, 78], "dynamical_screened_interaction_w": [3, 73, 78, 79], "dynamical_screened_interaction_w_from_generalized_suscept": [3, 73, 78, 79], "dyson": [91, 92], "dzyaloshinski": 81, "e": [1, 5, 23, 34, 35, 36, 46, 47, 65, 79, 80, 81, 83, 85, 86, 87, 88, 89, 90, 92, 94], "e_k": [46, 47, 59, 60, 61, 62, 63, 64, 65, 79, 88, 89, 90, 91, 92, 93, 94, 96], "e_k_cvt": [46, 47, 59, 60, 61, 62, 63, 64, 65, 79], "e_k_interp": 92, "e_k_t": [4, 37, 47, 49, 50, 70, 79], "e_kin": 90, "e_kin_do": 90, "e_kin_up": 90, "e_loc": 96, "e_tot": 90, "e_vec": 90, "each": [79, 81, 83, 86, 87, 89, 91], "easi": 79, "easier": [77, 93], "easybuild": 0, "effeci": 81, "effect": 79, "effici": [0, 75, 79, 81, 84, 92], "efgh": [32, 33, 79], "eig": 79, "eigen_mod": [79, 89], "eigenvalu": [79, 81, 89, 91], "eigenvector": [79, 81, 89], "einstein": [5, 83], "einsum": [90, 92], "either": [0, 80, 81, 89], "ek": 90, "electron": [81, 83, 89], "element": [79, 84, 87], "eliashberg": [1, 30, 34, 35, 73, 84], "eliashberg_product": [3, 78, 79], "eliashberg_product_fft": [3, 78, 79], "els": [81, 84, 93, 94], "emerg": 81, "emploi": [83, 85], "enabl": [0, 94], "encod": 0, "end": [81, 84, 86, 91, 94], "energi": [0, 37, 46, 47, 48, 49, 50, 61, 62, 63, 64, 79, 83, 88, 89, 93], "enforc": [0, 79, 91], "enforce_symmetri": 91, "ensur": [76, 79], "enter": 89, "entri": [79, 84], "enumer": [87, 92], "environ": 76, "ep": [79, 90], "eps_k": 92, "epsilon": [5, 36, 59, 60, 61, 62, 63, 64, 65, 79, 81, 90], "epsilon_": [46, 47, 59, 60, 61, 62, 63, 64, 65, 79, 93], "eq": [81, 86, 90], "equal": [80, 87], "equat": [27, 28, 29, 71, 73, 75, 84, 92], "equilibrium": 83, "equip": 94, "equiv": [51, 52, 53, 54, 55, 56, 57, 58, 65, 66, 67, 68, 69, 79, 80, 81, 82, 83, 85, 86, 87], "equival": [49, 86], "erik": 0, "err": 90, "error": [0, 79, 94], "espresso": [95, 96], "establish": [83, 89], "et": [79, 81, 84, 94], "eta": 90, "etc": [75, 79, 93], "ev": [89, 96], "eval": 79, "evalu": [5, 36, 65, 79], "even": 81, "everi": [79, 84, 86, 89], "everyth": 91, "exact": 79, "exampl": [73, 79, 80, 81, 88, 89, 91, 92, 96], "except": 86, "exchang": 81, "excit": [83, 92], "exclud": 79, "exclus": 84, "execut": 77, "exp": [5, 36, 83, 86, 87, 90], "expand": [81, 84, 85], "expans": [86, 96], "expect": [84, 89], "experienc": 77, "explicit": [0, 23, 79, 84], "explicitli": [0, 65, 79, 81, 83, 84, 86], "exploit": 83, "expm": 90, "expos": 79, "express": [65, 79, 81, 86, 87, 92], "extend": [0, 65, 85], "extens": 1, "extent": 92, "extern": [73, 83, 94], "extract": 84, "extrapol": [94, 96], "ey": [90, 92, 93], "f": [12, 17, 22, 24, 25, 26, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 65, 73, 79, 81, 90, 92, 93, 94, 96], "f_": [79, 82, 96], "f_wnn": [79, 96], "fact": [81, 84], "factor": [81, 85, 89, 90], "fals": [79, 84, 89, 93, 94], "far": 96, "fast": [38, 39, 40, 41, 42, 43, 44, 45, 89], "fazeka": 90, "fdm": 90, "featur": [73, 87], "feedstock": 76, "fegh": [32, 33, 79], "fequenc": 89, "fermi": [3, 96], "fermi_distribut": 90, "fermi_distribution_deriv": 90, "fermion": [12, 13, 14, 15, 16, 17, 18, 19, 65, 79, 80, 81, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96], "few": 96, "fft": [35, 79], "field": [73, 79, 93, 96], "figsiz": [87, 92], "figur": [87, 92], "file": [0, 76, 77, 79, 96], "filenam": [79, 89, 96], "filename_chi": 96, "filename_g2": 96, "filename_out": 96, "filename_sc": 96, "filename_tri": 96, "fill": [79, 89, 92], "final": [35, 80, 86], "find": [0, 77, 79, 89], "find_packag": 0, "find_uc": 90, "finder": 0, "finit": [79, 87, 94], "first": [35, 80, 84, 86, 87, 88, 89, 91, 92, 94], "fit": [0, 49, 72, 79, 94], "fix": [0, 79, 81, 91, 94], "flatten": 92, "flip": [79, 81, 84], "float": [79, 87, 93], "floor": 0, "fluctuat": 90, "flush": 96, "fock": [37, 49, 73], "fock_sigma": 3, "fold": 79, "folder": 95, "follow": [76, 77, 79, 81, 84, 86, 89, 91], "follw": 86, "forc": 82, "forg": 76, "form": [55, 56, 57, 58, 66, 67, 68, 69, 79, 81, 83, 86, 87, 89, 92, 93], "formal": [81, 92], "format": [93, 94], "formul": 96, "formula": [65, 79, 86, 92], "forward": 79, "found": [79, 89], "four": [81, 82, 83, 84, 86, 92], "fourier": [12, 17, 22, 24, 25, 26, 31, 35, 38, 39, 40, 41, 42, 43, 44, 45, 49, 65, 79, 83, 85, 86, 89, 90, 91, 92, 93, 96], "fourier_fk_to_fr": 3, "fourier_fr_to_fk": 3, "fourier_tk_to_tr": 3, "fourier_tr_to_tk": 3, "fourier_tr_to_wr": [3, 78], "fourier_wk_to_wr": [3, 78, 88, 90, 91, 92], "fourier_wr_to_tr": [3, 78, 90, 91, 92], "fourier_wr_to_wk": [3, 78], "frac": [5, 13, 14, 15, 16, 30, 34, 35, 36, 37, 46, 47, 49, 50, 61, 63, 65, 79, 80, 81, 82, 83, 84, 85, 86, 89, 90, 91, 92, 93, 94, 96], "framework": [0, 94], "free": 83, "freedom": 81, "freq": 88, "freq_conv": 87, "freqienc": [13, 18, 19, 88, 94], "frequenc": [0, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 30, 31, 35, 40, 41, 42, 43, 44, 45, 46, 47, 49, 59, 60, 61, 62, 63, 64, 65, 72, 73, 79, 81, 82, 85, 88, 89, 92, 94, 96], "frequencu": 87, "frequent": 73, "from": [0, 1, 22, 24, 25, 26, 38, 39, 40, 41, 42, 43, 44, 45, 70, 71, 73, 79, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 96], "fulfil": 86, "full": [32, 33, 73, 79, 84, 92], "fulli": [0, 46, 47, 73, 79, 81, 83], "function": [0, 2, 4, 5, 6, 7, 8, 9, 10, 11, 13, 18, 19, 20, 21, 27, 28, 29, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 81, 84, 88, 89, 90, 93, 94, 96], "functool": 91, "fundamental_oper": [90, 92], "fundamental_operators_from_gf_struct": 90, "further": [89, 91, 94], "g": [0, 6, 7, 8, 9, 20, 21, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 65, 79, 80, 81, 83, 85, 86, 87, 88, 89, 92, 93, 94, 96], "g0_iw": [88, 93, 94], "g0_w": [93, 94], "g0_wk": [84, 89, 90, 91, 92], "g0_wk_wo_spin": 84, "g0w0": 0, "g0w_dynamic_sigma": 3, "g0w_sigma": [3, 73, 78, 79], "g2": [7, 8, 20, 21, 79, 94], "g2_from_w2dyn_g2_worm_compon": 96, "g2_iw_cvt": [51, 55, 66], "g2_iw_ph": 94, "g2_iw_t": [7, 8, 20, 21, 51, 52, 53, 54, 55, 56, 57, 58, 66, 67, 68, 69, 79], "g2_iw_vt": [7, 8, 20, 21, 52, 53, 54, 56, 57, 58, 67, 68, 69, 79], "g2_loc_fixed_fermionic_window_python": [94, 96], "g2_nn_t": 79, "g2_nn_vt": 79, "g2_wnn": [79, 96], "g2_worm_compon": 96, "g_": [4, 7, 8, 9, 10, 11, 13, 18, 19, 20, 21, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 55, 56, 57, 58, 61, 62, 63, 64, 70, 79, 80, 81, 83, 84, 85], "g_0": [92, 93], "g_dn": 88, "g_dw_cvt": [64, 79], "g_dw_t": 79, "g_dwk_cvt": [64, 79], "g_dwk_t": [60, 64, 79], "g_dyn_fk": 4, "g_dyn_wk": 4, "g_f_cvt": [61, 62, 79], "g_f_t": [46, 47, 61, 79], "g_fk": [4, 40], "g_fk_cvt": [40, 62], "g_fk_t": [4, 41, 46, 47, 59, 62, 79], "g_fr": 41, "g_fr_cvt": 41, "g_fr_t": 40, "g_iw": [79, 87, 88], "g_iw_block": 87, "g_iw_vt": [7, 8, 20, 21, 79], "g_l": 93, "g_l_tol": [93, 94], "g_nr": [18, 19, 88], "g_stat_k": 4, "g_tau": [93, 96], "g_tau_cvt": 9, "g_tau_raw": 93, "g_tk": 38, "g_tk_cvt": 38, "g_tk_t": 39, "g_tr": [10, 11, 13, 18, 19, 39, 42, 48], "g_tr_cvt": [6, 10, 11, 39, 42, 48], "g_tr_gtr": 6, "g_tr_le": 6, "g_tr_t": [38, 44, 48], "g_w": [79, 93, 94, 96], "g_w_cvt": [63, 64], "g_w_t": 63, "g_wk": [13, 34, 35, 37, 43, 49, 50, 70, 79, 88, 94, 96], "g_wk_cvt": [13, 37, 43, 49, 50, 64, 70], "g_wk_t": [4, 34, 35, 45, 49, 60, 64], "g_wk_vt": [34, 35], "g_wr": [44, 45, 88], "g_wr_cvt": [18, 19, 44, 45], "g_wr_t": [42, 43], "gain": 89, "gamma": [27, 28, 29, 31, 34, 35, 51, 52, 53, 54, 55, 56, 57, 58, 66, 67, 68, 69, 79, 81, 83, 84, 86, 87, 89, 91, 92, 94, 96], "gamma_": [79, 81, 84, 87], "gamma_m": [79, 88, 94], "gamma_m_an": 87, "gamma_m_num": 87, "gamma_ph_magnet": 87, "gamma_ph_wnn": [27, 28, 29], "gamma_pp": [34, 89], "gamma_pp_const_k": [31, 79], "gamma_pp_const_r": [31, 35, 79], "gamma_pp_dyn_tr": [31, 35, 79], "gamma_pp_dyn_wk": 31, "gamma_pp_wk": 79, "gamma_singlet": [79, 91], "gamma_triplet": 79, "gamma_wnn": [79, 96], "gap": [0, 34, 35, 73, 79, 89, 91], "gb": [90, 91, 92], "gener": [1, 4, 6, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 33, 65, 72, 73, 81, 84, 85, 86, 87, 88, 90, 91, 94], "general_susceptibility_from_charge_and_spin": 84, "gereal": 79, "get": [76, 79, 80, 81, 84, 86, 87, 89], "get_chi0_nk_at_specific_w": [73, 79], "get_chi0_wnk": [73, 79], "get_cmap": 92, "get_density_of_st": 90, "get_kmesh": [79, 89, 90, 91, 92, 93, 96], "get_rmesh": 79, "get_rpa_tensor": [71, 79, 90], "get_total_energy_mf_ref": 90, "get_zero": 0, "gf": [0, 78, 79, 87, 88, 89, 90, 91, 92, 93, 96], "gf_struct": [0, 79, 90, 93, 94], "gf_worm_compon": 96, "gfbloc": 79, "gg": [7, 8, 9, 20, 21, 65, 79], "gingra": [0, 1], "gist": 77, "git": 76, "github": [76, 77], "give": [34, 35, 65, 77, 79, 83, 84, 86, 89, 92, 94, 96], "given": [30, 32, 33, 34, 35, 49, 51, 52, 53, 54, 55, 56, 57, 58, 66, 67, 68, 69, 79, 80, 81, 83, 84, 86, 89, 92, 93, 94, 96], "glob": 93, "global": 86, "gnu": 1, "go": [76, 83], "goe": 93, "gor": 81, "gpl": 1, "greater": 6, "greek": 84, "green": [0, 4, 6, 7, 8, 9, 10, 11, 13, 18, 19, 20, 21, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 59, 60, 61, 62, 63, 64, 65, 70, 72, 73, 81, 83, 84, 86, 88, 89, 91, 92, 93, 94, 96], "grid": [90, 92], "group": 86, "gt": [90, 91, 92], "guarante": [0, 76], "guess": 93, "guid": [74, 88, 94], "guidelin": 77, "gw": [1, 46, 47, 48, 49, 73], "gw_dynamic_sigma": 3, "gw_sigma": [3, 73, 78, 79], "gw_solver": 79, "gwsolver": [73, 79], "h": [1, 79, 80, 87, 89, 90, 92, 93, 96], "h5": [79, 93, 94, 96], "h_": [84, 90, 93], "h_int": [0, 79, 90, 92, 93], "h_loc": 90, "ha": [1, 79, 80, 81, 82, 84, 86, 87, 89, 90, 91, 92, 94], "hafermann": 94, "half": [79, 89, 92], "hamiltonian": [79, 83, 84, 87, 88, 89, 96], "hamitlonian": 83, "hampel": 0, "hand": [79, 86, 89, 96], "hartre": [50, 73], "hartree_fock_solv": 79, "hartree_sigma": 3, "hartree_solv": 79, "hartreefockrespons": [73, 79], "hartreefocksolv": [73, 79], "hartreerespons": [73, 79], "hartreesolv": [73, 79], "hasattr": 93, "hat": [79, 81, 84, 90], "have": [0, 76, 77, 79, 80, 81, 84, 87, 89, 91, 92, 96], "hdf": 79, "hdfarchiv": [79, 93, 94, 96], "heisenberg": 80, "helper": [0, 5, 36, 79, 87, 88, 92, 93, 94], "henc": [79, 82, 85], "here": [76, 79, 81, 83, 84, 87, 88, 89, 91, 92, 93, 94, 96], "hermitian": 82, "hf": 79, "hf_respons": 79, "hf_solver": 79, "hgcd": [32, 33, 79], "high": [49, 72, 79, 91, 92, 94], "higher": [16, 65, 75, 76, 91], "highlight": 84, "histor": 84, "hold": [81, 84, 86], "hole": [6, 7, 9, 10, 11, 13, 18, 19, 20, 21, 27, 28, 29, 30, 52, 53, 56, 57, 65, 67, 68, 71, 73, 75, 79, 84, 87, 92, 94], "homepag": 75, "homogen": [89, 94], "hop": [79, 89, 90, 92, 93, 94], "hopp_dict": 79, "horizont": [83, 86], "hotta": 81, "hound": 79, "hove": 92, "how": [74, 75, 81, 87, 89], "howev": [82, 87, 94, 96], "hpp": [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 78], "hr": 0, "http": [76, 77, 87, 95], "hubbard": [73, 81, 88, 91, 92, 93, 94, 96], "hubbard_atom": [78, 87], "hugo": [0, 1, 90], "hund": [81, 96], "hybrid": [87, 96], "i": [0, 1, 4, 6, 23, 30, 31, 32, 33, 34, 35, 37, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 94, 96], "id": [65, 79], "idea": 81, "ident": [3, 52, 53, 54, 78, 79], "identity_ph": [3, 73, 79], "identity_ph_bar": [3, 73, 79], "identity_pp": [3, 73, 79], "idx": [0, 87, 90, 92, 93], "idxs_vec": 90, "iint_0": 86, "ij": [46, 47, 65, 79], "im": [46, 47, 87], "imag": [0, 76, 87], "imaginari": [0, 10, 11, 13, 18, 19, 22, 23, 25, 26, 31, 35, 42, 43, 44, 45, 49, 60, 63, 64, 65, 79, 80, 83, 85, 86, 88, 92], "imfreq": [60, 65], "implement": [0, 73, 75, 79, 81, 92, 96], "impli": 1, "implicitli": [0, 79], "implicitly_restarted_arnoldi_method": [73, 79], "import": [0, 79, 84, 87, 88, 89, 90, 91, 92, 93, 94, 96], "impos": 86, "improp": 1, "improv": [0, 1, 87, 94, 96], "impur": [73, 87, 88, 93, 94, 96], "impurity_irreducible_vertex_gamma": 96, "impurity_reducible_vertex_f": [73, 79, 96], "imshow": [87, 92], "imtime_bubble_chi0_wk": [73, 79, 84, 90, 91, 92], "includ": [0, 1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 76, 77, 81, 93], "incom": 83, "incorpor": [80, 81], "incorrect": 1, "incorrectli": 79, "increas": [89, 94], "indent": 0, "independ": [61, 63, 64, 65, 73, 79, 82, 89, 92], "index": [0, 79, 81, 84, 86, 92], "indic": [0, 51, 52, 53, 54, 55, 56, 57, 58, 66, 67, 68, 69, 79, 81, 83, 84, 86, 89, 92, 94], "indistinguish": 81, "individu": [0, 91], "infin": 16, "infinit": [79, 87], "inform": [76, 77, 84, 89, 94], "infti": [16, 31, 72, 79, 83, 85, 94, 96], "ingredi": [89, 91], "inhibt": 89, "init": [0, 79, 93, 94], "initi": [79, 93], "initial_delta": 79, "input": [79, 93], "insert": [81, 83, 86], "insid": [0, 79, 81], "instabl": [90, 92], "instal": [0, 77], "instanc": 79, "instead": [0, 81, 94], "instruct": [0, 76], "int": [13, 18, 19, 22, 25, 42, 44, 79, 84, 93, 94], "int_": 90, "int_0": [11, 23, 80, 82, 83, 85], "integ": [79, 83], "integr": [23, 65, 79, 82, 86], "integrand": 90, "inter": 79, "interact": [32, 33, 37, 46, 47, 48, 49, 50, 59, 60, 61, 62, 63, 64, 65, 73, 81, 83, 86, 89, 90, 91, 92, 93, 96], "interchang": 86, "interest": 81, "interfac": [0, 79], "intern": 79, "interpol": [92, 96], "interpolate_chi": 92, "interpret": 89, "intra": 79, "introduc": [0, 84, 85, 89], "inv": 90, "invari": [85, 89], "invers": [3, 38, 40, 43, 46, 47, 56, 57, 58, 65, 75, 78, 79, 81, 88, 89, 93], "inverse_ph": [3, 73, 79, 87, 94], "inverse_ph_bar": [3, 73, 79], "inverse_pp": [3, 73, 79], "invert": [55, 56, 57, 58, 79, 87], "involv": 82, "iomega_n": [79, 88], "ipython": 89, "iram": 79, "irreduc": [0, 30, 73, 79, 83, 86, 96], "is_master_nod": [93, 94], "issu": 0, "item": 0, "iter": [79, 93, 96], "itertool": [90, 92, 96], "ith": 83, "its": [1, 76, 79, 82, 89, 94], "j": [65, 79, 81, 84, 89, 90, 92, 96], "jammi": 76, "jb": [65, 79], "jp": 79, "jujo": 81, "just": 96, "k": [0, 4, 13, 14, 15, 16, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 43, 45, 46, 47, 49, 50, 59, 60, 61, 62, 63, 64, 65, 70, 71, 72, 79, 81, 84, 88, 89, 90, 91, 93, 96], "k_cvt": 79, "k_mesh": 79, "k_plot": 92, "k_space_path": [73, 79, 92], "k_tick": 92, "k_vec": [90, 92], "k_vol": 90, "k_x": 92, "k_y": 92, "kaeser": 0, "kanamori": [79, 81, 84, 96], "kanamori_quartic_tensor": [73, 79], "keep": [76, 81, 84, 88, 93, 94], "kei": [79, 92], "kelvin": 89, "keyword": [79, 89], "kidx": 92, "kind": [1, 96], "kinet": [79, 89], "kjpaw_psl": 95, "km": 73, "kmesh": [46, 47, 79, 92, 93, 96], "know": 89, "knowledg": 89, "known": [33, 79, 87, 92], "kotliar": 81, "kov": 81, "kpoint": [46, 47, 79], "kroneck": 86, "kubo": 73, "kvec": 79, "kwarg": 79, "kx": 92, "ky": 92, "kz": 92, "k\u00e4ser": [0, 1], "l": [29, 46, 47, 79, 81, 89, 90, 96], "l_": [79, 96], "l_from_g3": 96, "l_wn": [29, 79, 96], "la": 79, "label": [83, 86, 87, 90, 92], "ladder": [30, 79, 81, 89, 91], "lambda": [79, 81, 89, 91, 92], "lambdas_freq_even_mom_even": 91, "lambdas_freq_odd_mom_odd": 91, "langl": [79, 80, 82, 83, 84, 85, 89, 90, 92], "larg": 81, "largest": [79, 81, 89], "last": [65, 84, 89], "latest": 76, "latin": 84, "lattic": [0, 27, 28, 29, 46, 47, 59, 60, 61, 62, 63, 64, 65, 70, 73, 84, 90, 91, 93, 96], "lattice_dyson_g0_fk": [3, 73, 78, 79], "lattice_dyson_g0_wk": [3, 73, 78, 79, 89, 90, 91, 92], "lattice_dyson_g_f": [3, 73, 79], "lattice_dyson_g_fk": [3, 73, 78, 79], "lattice_dyson_g_w": [3, 73, 78, 79, 93], "lattice_dyson_g_wk": [3, 73, 78, 79, 88, 94, 96], "lattice_to_real_coordin": 79, "lattice_util": [79, 84, 90, 91, 92], "lb": [46, 47], "lead": [79, 83, 91], "learn": 75, "leav": 81, "left": [12, 17, 22, 24, 25, 26, 27, 28, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 59, 60, 61, 62, 63, 64, 65, 79, 81, 83, 86, 89, 91, 94], "leg": [83, 86], "legend": [90, 92], "legendr": 93, "legendretomatsubara": 93, "len": 79, "length_cycl": [93, 94], "leq": 81, "less": 90, "lesser": 6, "letter": [81, 84], "level": [92, 96], "lexicograph": 84, "librari": [0, 1, 76], "lightweight": 94, "like": [81, 94], "lim_": [90, 94], "limit": [0, 73, 79, 82, 84, 94, 96], "linalg": [51, 52, 53, 54, 55, 56, 57, 58, 66, 67, 68, 69, 78, 79, 87, 90, 94], "linder": 81, "lindhard": [65, 73, 79, 92], "lindhard_chi00": [3, 73, 78, 79, 92], "lindhardt": 92, "lindhardt_chi00": 78, "line": 90, "line2d": 90, "linear": [0, 34, 35, 73, 87, 95], "linearli": [82, 94], "linearoper": 79, "link": 0, "linspac": [90, 92], "linux": 76, "list": [0, 79, 81, 90, 92], "ll": 86, "load": [79, 96], "load_h5": 96, "loc": 90, "local": [27, 28, 29, 30, 61, 63, 75, 79, 81, 88, 89, 92, 93, 96], "log": 65, "logo": 0, "longer": 0, "look": [76, 91, 92, 93, 94], "loon": 0, "loop": 0, "lose_spin_degree_of_freedom": 84, "low": 94, "lower": 92, "lt": [76, 90], "lw": 90, "m": [1, 30, 79, 81, 90, 91, 92, 93, 94], "m0": 79, "m2": [79, 87], "m_old": 93, "m_vec": 90, "made": 79, "magent": 91, "maget": 94, "magma": 92, "magnet": [30, 79, 81, 87, 94, 96], "mainli": 87, "major": [0, 76], "make": [0, 76, 77, 79, 81, 86, 87, 88, 91, 93, 94], "make_gf_from_fouri": 96, "malt": 0, "manag": 0, "mangl": 79, "mani": [81, 83, 84], "manifest": [81, 83], "manner": 89, "manual": 89, "manuel": 0, "map": [51, 52, 53, 54, 55, 56, 57, 58, 66, 67, 68, 69, 73, 79, 86, 87, 89], "martin": 73, "mat": [79, 90], "mat2vec": 79, "matbf": 15, "math": 79, "mathbb": [71, 79, 83, 84], "mathbf": [4, 6, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 59, 60, 61, 62, 63, 64, 65, 70, 71, 72, 79, 81, 90, 91, 93, 94, 96], "mathcal": [12, 17, 22, 24, 25, 26, 35, 38, 39, 40, 41, 42, 43, 44, 45, 49, 65, 79, 80, 81, 83, 85, 86, 92], "mathrm": [30, 34, 35, 79, 81, 84, 89, 91], "matplotlib": [90, 92], "matric": [46, 47, 65, 79, 84, 92], "matrix": [0, 37, 46, 47, 49, 50, 55, 56, 57, 58, 65, 66, 67, 68, 69, 70, 73, 79, 82, 86, 87, 89, 90], "matrix_valu": 79, "matrixlib": 90, "matsuabara": [12, 13, 14, 15, 16, 17, 18, 19], "matsubara": [0, 13, 14, 15, 16, 18, 19, 22, 23, 24, 25, 26, 31, 42, 44, 59, 60, 63, 64, 65, 72, 73, 79, 81, 88, 89, 91, 96], "matter": 81, "matvec": 79, "max": [14, 15, 87, 88, 90, 92, 93], "max_it": 79, "maxim": 79, "maximum": [79, 89], "mean": [79, 84, 89, 94, 96], "measur": 94, "measure_g2_block": 94, "measure_g2_iw_ph": 94, "measure_g2_n_boson": 94, "measure_g2_n_fermion": 94, "measure_g_l": [93, 94], "measure_g_tau": 94, "member": 89, "memori": [0, 84, 90, 91, 92], "merg": 0, "mesh": [0, 7, 8, 46, 47, 59, 60, 65, 79, 87, 88, 89, 90, 91, 92, 93], "meshbrzon": [79, 88, 92], "meshcyclat": 79, "meshgrid": 92, "meshimfreq": [79, 89, 90, 91, 92, 93], "meshimtim": 79, "meshproduct": [79, 89], "metal": 96, "method": [0, 79, 81, 84, 89, 94], "mf": 90, "min": [14, 15, 92], "mind": 76, "minor": [0, 76], "minu": [81, 84, 91], "miss": 74, "mix": 79, "mkdir": 76, "mode": 76, "model": [73, 91, 93, 94, 96], "modern": [0, 81], "modul": [0, 89, 93, 94], "momenta": 81, "momentum": [0, 12, 14, 15, 16, 17, 24, 26, 30, 32, 33, 49, 61, 63, 64, 79, 81, 89, 90, 92, 94], "monomi": 84, "mont": [0, 94, 96], "more": [0, 76, 79, 81, 84, 89, 92, 94], "most": 0, "move": 76, "move_doubl": [93, 94], "mp": [81, 90], "mpi": [0, 19, 75, 93, 94], "mu": [46, 47, 59, 60, 61, 62, 63, 64, 65, 79, 88, 89, 90, 91, 92, 93, 94, 96], "mu0": 79, "mu_bracket": 79, "mu_max": 79, "mu_min": 79, "much": 94, "multi": [0, 91], "multiorbit": 92, "multipl": [79, 86, 94], "must": [1, 65, 76, 79, 81, 84, 89, 91], "n": [0, 1, 79, 83, 84, 85, 89, 90, 92, 93, 95], "n_": [30, 65, 79, 81, 87, 89, 90, 93, 94, 96], "n_b": [5, 46, 47], "n_cycl": [93, 94], "n_fix": 79, "n_iter": [93, 94], "n_iw": [93, 94], "n_k": [13, 15, 37, 46, 47, 49, 50, 61, 63, 65, 79, 88, 89, 90, 92, 93, 94, 96], "n_l": [93, 94], "n_max": [89, 90, 91, 92], "n_orbit": 79, "n_r": 79, "n_site": 79, "n_target": 79, "n_tau": [93, 94], "n_tol": 79, "n_tot": 79, "n_warmup_cycl": [93, 94], "name": [79, 92], "name_list": 87, "nan": 93, "nb": [14, 15], "nda": 79, "ndarrai": 79, "ndim": 79, "ne": [90, 94], "nearest": [79, 89, 90, 92, 93, 94], "need": [75, 79, 81, 87, 89, 91, 92, 96], "neglect": 90, "neigbhour": 92, "neighbor": [79, 89], "neighbour": [90, 92, 93, 94], "neq": [79, 81, 84], "nessecari": 92, "nest": 92, "new": [0, 76, 81, 93], "newton": 79, "next": [79, 91, 93], "nice": 92, "nil": 0, "nitermax": 79, "nk": [89, 90, 91, 92], "nm": 82, "nn": [13, 18, 19, 88], "node": 92, "nois": 94, "noisi": 0, "nomura": 81, "non": [0, 59, 60, 65, 73, 80, 81, 83, 86, 89, 90, 91, 92, 95, 96], "none": [79, 87, 92, 94, 96], "nonloc": 81, "norb": [79, 89, 90, 91, 92], "norm": 79, "normal": [73, 84], "notat": [84, 86], "note": [1, 79, 80, 81, 84, 86, 87, 94], "notebook": [0, 89, 91], "notion": [85, 86], "nourafkan": 81, "now": [0, 31, 79, 80, 81, 83, 85, 87, 91, 92, 94], "np": [0, 79, 87, 88, 90, 91, 92, 93, 96], "nr_factor": 79, "nsite": 79, "nt": 44, "ntau": 22, "nu": [7, 8, 9, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 27, 28, 29, 34, 35, 51, 52, 53, 54, 55, 56, 57, 58, 65, 66, 67, 68, 69, 79, 81, 83, 84, 85, 86, 87, 94, 96], "nu_": [14, 15, 86], "nu_1": [83, 86], "nu_2": [83, 86], "nu_3": [83, 86], "nu_4": [83, 86], "nu_a": 86, "nu_b": 86, "nu_c": 86, "nu_d": 86, "nu_i": 83, "nu_m": 82, "nu_n": [34, 35, 79, 81, 82, 83, 85], "nu_u": 86, "nu_v": 86, "num": [79, 87, 88, 90, 92], "num_orbit": 96, "num_wann": 79, "number": [0, 13, 18, 19, 76, 77, 79, 81, 87, 89, 94, 96], "numer": 90, "numpi": [0, 79, 90, 91, 93, 96], "nw": [13, 18, 19, 25, 42, 79, 84, 87, 88, 89, 90, 91, 92], "nw_index": 79, "nwf": [79, 87, 88, 94, 96], "nwf_gf": [79, 87, 88], "nwf_vec": 87, "o": [1, 65, 81, 87, 95], "object": [79, 87, 89, 93, 94], "observ": [79, 89, 93, 96], "obtain": [65, 71, 79, 81, 82, 83, 84, 87, 88, 89, 91, 92, 93, 94, 96], "occupi": 89, "occur": [79, 81], "odd": 81, "oder": 89, "off": [76, 89, 96], "offset": 89, "olivi": 0, "omega": [4, 7, 8, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 33, 40, 41, 46, 47, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 65, 66, 67, 68, 69, 79, 83, 84, 85, 86, 87, 92, 94, 96], "omega_": 79, "omega_0": 82, "omega_n": [4, 30, 31, 32, 33, 37, 42, 43, 44, 45, 49, 50, 60, 63, 64, 65, 70, 71, 72, 79, 81, 88, 91, 92, 93], "one": [0, 12, 13, 14, 15, 16, 17, 18, 19, 30, 35, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 94, 96], "ones": [0, 84, 91], "onli": [0, 30, 79, 81, 83, 84, 85, 87, 88, 89, 90, 94, 96], "op1": 79, "op2": 79, "openmp": [0, 75, 94], "oper": [0, 51, 52, 53, 54, 73, 75, 77, 80, 81, 83, 84, 89, 90, 92, 93], "operatorutil": 92, "oploti": 87, "opt": 87, "optim": [0, 65, 79], "option": 79, "orb": 84, "orbit": [0, 79, 81, 84, 87, 89, 91, 92, 94, 96], "orbital1": 79, "orbital2": 79, "orbital_nam": [79, 90, 92, 93], "orbital_posit": [79, 90, 92, 93], "ord": 91, "order": [16, 23, 75, 77, 79, 80, 84, 86, 87, 88, 89, 92, 94, 96], "org": [87, 95], "origin": 92, "osx": 76, "other": [76, 79, 81, 82, 83, 84, 89], "otherwis": [79, 81], "our": [81, 89, 91], "out": [34, 35, 79, 83], "output": [77, 79, 96], "over": [0, 14, 15, 16, 65, 79, 81, 82, 84, 86, 88, 91, 92], "overal": 79, "overlin": [30, 79, 81], "overwrit": 89, "oxford": 81, "p": [1, 79, 81, 84, 86, 88, 93, 94, 96], "p0": 93, "p1": 79, "p2": [79, 96], "p2_from_w2dyn_p2_worm_compon": 96, "p2_remove_disconnect": 96, "p3": 96, "p3_from_w2dyn_p3_worm_compon": 96, "p3_w2dyn_to_triqs_freq_shift_alt": 96, "p_": 86, "p_chi": 96, "p_g2": 96, "p_ref": 79, "p_tri": 96, "pack_index_site_orbit": 79, "packag": [0, 84], "pade": 0, "page": [0, 75, 76, 77], "pair": [79, 81, 82, 83, 84, 86, 91], "panel": 94, "paper": [79, 84], "parallel": [0, 19, 24, 25, 26, 83, 94], "paramet": [73, 87, 89], "parameter_scan": [73, 79], "parametercollect": [73, 79, 89, 93, 94], "parametr": 73, "parcollet": [1, 86], "pariti": [81, 91], "parquet": 81, "pars": 79, "parse_band_structure_from_wannier90_band_dat": [73, 79], "parse_hopping_from_wannier90_hr_dat": [73, 79], "parse_lattice_vectors_from_wannier90_wout": [73, 79], "parse_reciprocal_lattice_vectors_from_wannier90_wout": [73, 79], "parser": 73, "part": [0, 31, 35, 46, 47, 49, 72, 79, 83, 89, 96], "partial": 91, "partial_": [82, 90], "partiali": 79, "particl": [0, 6, 7, 8, 9, 10, 11, 13, 18, 19, 20, 21, 27, 28, 29, 30, 34, 35, 37, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 65, 66, 67, 68, 69, 70, 71, 73, 82, 84, 90, 92, 94, 96], "particular": [1, 76, 79, 86], "partit": 96, "pass": [0, 79, 87, 93, 94], "patch": 0, "path": [76, 79, 91, 92, 94], "path_to_tprf": 76, "path_to_triq": 76, "pauli": 81, "paw": 95, "pbe": 95, "peopl": 84, "per": 79, "percentag": 79, "perfect": 92, "perform": [1, 65, 84, 87, 88, 92, 93, 94, 96], "pergamon": 81, "period": [73, 79, 82, 83, 85], "permut": [81, 82, 84, 86], "ph": [27, 28, 29, 52, 53, 56, 57, 67, 68, 73, 79, 82, 84, 92, 94], "phase": [0, 71, 73, 75, 89], "phi": [30, 79, 81, 91], "phi_": 81, "phi_d_wk": [79, 91], "phi_m_wk": [79, 91], "philipp": 0, "pht": 89, "physic": [81, 91], "pi": [46, 47, 83, 85, 90, 92], "pi_": [32, 79], "pi_fk": [32, 79], "pi_wk": [32, 79], "pipelin": 0, "place": 0, "plane": [65, 80, 89, 92], "pleas": [76, 77, 79, 93, 96], "plot": [79, 87, 89, 90, 91, 92, 93, 94, 96], "plot_bs": 94, "plot_chi": [87, 91, 92], "plot_chi_1d": 92, "plot_data": 87, "plot_dbs": 96, "plot_delta": 91, "plot_field": 94, "plot_g2": 94, "plot_sc": 93, "plt": [87, 90, 92], "pm": [79, 80, 81, 85, 90, 92], "pm1": 83, "pmatrix": 84, "point": [5, 36, 79, 81, 88, 89, 91, 92, 94, 96], "polar": [32, 79], "pole": 65, "polynomi": 94, "popul": 87, "port": 0, "port_to_triqs3": 0, "posit": [0, 79, 89, 92], "positive_onli": 88, "possibl": [1, 81, 83, 86, 94, 96], "potenti": [0, 46, 47, 59, 60, 61, 62, 63, 64, 65, 79, 89], "power": [0, 79], "power_method_lr": [73, 79], "pp": [54, 58, 69, 73, 79, 81, 83], "ppx": 73, "practic": 94, "prb": [79, 81, 84, 86, 94, 96], "predict": 79, "prefactor": 84, "prepar": 79, "preprocess_gamma_for_fft": [73, 79], "present": 89, "previous": 89, "prime": 79, "principl": [81, 87], "print": [79, 88, 90, 96], "problem": [77, 79, 87, 88, 89, 96], "process": [81, 89, 91], "produc": [65, 84, 86, 96], "product": [0, 3, 30, 34, 35, 47, 48, 49, 65, 67, 68, 69, 73, 75, 78, 79, 83, 84, 88, 89, 90, 91, 92, 96], "product_ph": [3, 73, 79], "product_ph_bar": [3, 73, 79], "product_pp": [3, 73, 79], "program": 1, "propag": [82, 83, 92, 96], "properli": 79, "properti": [79, 80, 81, 96], "protect": 0, "provid": [0, 1, 75, 76, 77, 79, 94], "pseudopotenti": 95, "public": 1, "publish": 1, "pure": 81, "py": [93, 94, 96], "pyplot": 92, "python": [76, 93, 94], "python3": 0, "pytriq": 0, "q": [12, 13, 17, 30, 37, 46, 47, 49, 50, 65, 73, 79, 81, 84, 86, 90, 91, 92, 94, 96], "quad": [83, 85, 86, 89, 90], "quadrat": [82, 83, 84, 92], "quanti": 96, "quantit": 94, "quantiti": [73, 83, 86, 87, 92], "quantiz": [83, 85], "quantum": [95, 96], "quartic": [79, 84], "quartic_permutation_symmetr": 92, "quartic_tensor_from_oper": 92, "quasi": [79, 83], "question": [73, 86], "quickli": 77, "r": [0, 1, 6, 10, 11, 12, 13, 17, 18, 19, 22, 23, 24, 25, 26, 35, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 61, 63, 65, 79, 82, 83, 84, 86, 87, 90, 91, 92, 94, 96], "r_": 82, "r_0": [83, 86], "r_t": 79, "race": 0, "rais": 79, "random": [0, 71, 73, 75, 89, 90], "rang": [79, 81, 90, 92, 93, 94, 96], "rangl": [79, 80, 82, 83, 84, 85, 89, 90, 92], "rank": [72, 79, 84, 90, 91, 92], "rate": 96, "rcl": 86, "rdbu": 92, "re": 87, "read": [80, 86, 91], "reader": 0, "real": [0, 6, 10, 11, 12, 13, 17, 18, 19, 22, 23, 24, 25, 26, 31, 35, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 59, 61, 62, 65, 79, 81, 85, 87, 88, 90, 92, 96], "reason": 84, "recent": 0, "reciproc": 79, "recommend": 76, "reconstruct": 82, "record": 89, "recuc": 86, "recurs": 79, "reduc": [30, 73, 79, 81, 91, 96], "reduct": 86, "ref": 88, "refer": [81, 92, 96], "referenc": 77, "reformul": 96, "refreq": [59, 65, 79], "regener": 0, "rel": [79, 92], "relat": [0, 46, 47, 65, 73, 79, 80, 82, 83, 84, 85, 89, 91, 94], "relative_coordin": 79, "relativist": 95, "releas": [0, 76], "relev": 79, "remain": 83, "remov": [0, 79, 96], "remove_intern": 79, "remove_internal_hop": 79, "renam": 0, "reparametr": 86, "repeat": [83, 90, 92, 96], "repeatedli": 93, "repl_hubbard": 89, "replac": 87, "report": [81, 93], "repositori": [76, 96], "repres": [79, 84], "represent": [46, 47, 79, 80, 84, 86, 87, 89, 92], "reproduc": [76, 77, 96], "repuls": 89, "requir": [76, 79, 87, 96], "reshap": [90, 92], "residu": [65, 79], "resolut": 96, "resolv": 84, "respect": [80, 81, 82, 86, 87, 96], "respons": [1, 23, 51, 52, 53, 54, 55, 56, 57, 58, 65, 66, 67, 68, 69, 73, 86, 91, 94], "rest": 84, "restart": [0, 79], "restor": 0, "restrict": [79, 80, 81, 84], "resul": 94, "result": [1, 34, 35, 51, 52, 53, 54, 65, 79, 85, 86, 87, 88, 90, 93, 94, 96], "retar": 87, "retun": 79, "return": [79, 87, 89, 90, 92, 96], "return_tick": 79, "revers": 86, "revert": 79, "review": 81, "rewrit": 84, "rho": [79, 90, 93], "rho_": [37, 49, 50, 70, 82], "rho_k": 70, "rho_k_from_g_wk": 3, "rid": 81, "right": [12, 17, 22, 24, 25, 26, 27, 28, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 59, 60, 61, 62, 63, 64, 65, 79, 81, 83, 86, 89, 90, 94], "rightarrow": [12, 17, 22, 24, 25, 26, 31, 72, 79, 82, 90, 92, 94, 96], "rigor": 89, "rl": 86, "rohring": 81, "root": 77, "root_funct": 90, "rot90": 90, "rout": 81, "routin": [0, 1, 89, 92, 93], "row": [65, 79], "rpa": [71, 73, 79, 81, 89], "rpa_tensor": [71, 79, 84, 90], "ru": [95, 96], "rule": 90, "run": [0, 76, 79, 84, 93, 94, 95], "r\u00f6sner": [0, 1], "s_z": 96, "salpet": [27, 28, 29, 73, 75, 81, 84, 92], "same": [76, 80, 81, 84, 86, 87, 89, 94], "sampl": [93, 94, 96], "sanit": 0, "save": 96, "save_memori": 79, "sc": 89, "scalar": [87, 95], "scale": [65, 85], "scan": 79, "scatter": [81, 83], "scheme": [79, 84], "schrieffer": 81, "schwinger": 73, "scientif": [1, 76], "scipi": [79, 90], "scirpt": 96, "screen": [32, 33, 46, 47, 79], "script": [0, 77, 93, 94, 96], "se": 93, "search": 79, "second": [80, 83, 85, 89], "section": [0, 85, 93], "see": [75, 76, 79, 80, 81, 84, 85, 86, 88, 89, 92, 94, 96], "seed": 79, "seen": 89, "segment": 79, "select": [51, 52, 53, 54, 55, 66, 67, 68, 69], "self": [0, 37, 46, 47, 48, 49, 50, 61, 62, 63, 64, 79, 81, 88, 96], "selfconsist": 0, "semi_random_initial_delta": [73, 79], "sens": 89, "separ": [81, 86], "sequenc": 79, "seri": [79, 85, 94], "serv": 89, "set": [79, 81, 84, 89, 93, 94, 96], "settl": 83, "setup": [87, 88, 89, 92, 96], "setup_dmft_calcul": [93, 94], "setuptool": 76, "sever": 94, "sh": 76, "sha256": 0, "shall": [79, 89], "shallow": 79, "shape": [51, 52, 53, 54, 79, 90, 91, 92, 96], "share": 76, "shell": 76, "should": 79, "show": [85, 86, 87, 89, 91, 96], "shown": [81, 84, 94], "side": [86, 89], "sidebar": 0, "sigma": [46, 47, 48, 49, 61, 62, 63, 64, 79, 84, 88, 89, 90, 92, 93], "sigma_": [37, 46, 47, 48, 49, 50, 61, 62, 63, 64, 79], "sigma_f": [61, 62, 79], "sigma_fk": [62, 79], "sigma_iw": 88, "sigma_w": [63, 64, 79, 88, 93, 94, 96], "sigma_wk": [64, 79], "sigma_x": 90, "sign": [81, 89], "signatur": [79, 92], "simon": 0, "simpl": [65, 87, 88, 89], "simpler": 80, "simplif": 81, "simplifi": [89, 91, 92], "sinc": [80, 87, 94, 96], "singl": [0, 7, 8, 9, 20, 21, 34, 37, 48, 49, 50, 65, 70, 73, 79, 80, 82, 83, 86, 92, 93, 94, 96], "single_particle_greens_funct": 87, "singlet": [0, 30, 34, 35, 79, 81, 89, 91], "singular": 92, "site": [79, 89, 92], "size": [51, 52, 53, 54, 79, 81, 87, 88, 94], "slightli": [86, 90], "small": [81, 93, 96], "smaller": [0, 81], "snippet": 84, "so": [74, 80, 81, 87], "solei": 81, "solut": [79, 81, 93, 94, 96], "solv": [0, 73, 77, 79, 81, 82, 87, 88, 92, 94, 96], "solve_eliashberg": [73, 79, 81, 89, 91], "solve_it": 79, "solve_lattice_bs": [73, 79, 94, 96], "solve_lattice_bse_at_specific_w": [73, 79], "solve_lattice_dbs": [73, 79, 96], "solve_local_bs": [73, 79], "solve_newton": 79, "solve_newton_mu": 79, "solve_rpa_ph": [3, 73, 78, 79, 84, 90, 91, 92], "solve_self_consistent_dmft": [93, 94], "solver": [0, 27, 28, 29, 73, 87, 93, 94, 96], "some": [0, 46, 47, 79, 87, 89, 92], "sourc": [77, 79], "space": [0, 6, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 31, 35, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 51, 52, 53, 54, 55, 56, 57, 58, 66, 67, 68, 69, 72, 79, 81, 86, 87, 88, 90, 92], "spars": 79, "spec": [46, 47], "special": 90, "specic": 89, "specif": [0, 79, 81, 91], "specifi": [76, 77], "specifii": 91, "spectral": [46, 47], "spell": 0, "spht": 89, "spht_hubbard_phase_diagram": 89, "spin": [0, 73, 79, 81, 87, 89, 91, 92, 94], "spin_fast": 84, "split": [49, 72, 79, 83], "split_into_dynamic_wk_and_constant_k": [3, 78], "split_quartic_tensor_in_charge_and_spin": 84, "spn": 95, "spot": [73, 91], "sqrt": [81, 83, 85, 90], "squar": [73, 79, 88, 91, 93, 94, 96], "square_lattic": [79, 91], "squeez": [88, 90], "sr": 95, "sr2ruo4": [0, 73], "src": 76, "sro": 96, "sro_hr": 96, "stabl": 76, "stablizi": 0, "stackrel": [83, 86], "stagger": 89, "stand": 86, "standard": [65, 96], "start": [79, 84, 92, 93, 94, 96], "stat": [49, 72, 79], "state": [1, 73, 84, 89, 90], "static": [0, 4, 23, 30, 32, 33, 35, 37, 47, 49, 50, 71, 79, 81, 82, 87, 88, 94, 96], "statist": [88, 89], "std": [30, 31, 47, 71, 72, 79], "stdout": 0, "stefan": 0, "stem": 81, "step": [79, 84, 87, 91, 92, 94, 96], "still": 81, "stochast": 94, "stop": 79, "storag": [51, 52, 53, 54, 55, 56, 57, 58, 66, 67, 68, 69, 79], "store": [79, 89, 93, 94], "str": 79, "strand": [0, 1, 90], "strength": [79, 89, 92], "string": 79, "strongli": [76, 81], "structur": [79, 92, 96], "studi": [87, 89], "su": [81, 84], "sub": 65, "subdivid": 89, "sublattic": 89, "subp": [87, 92], "subplot": [87, 92], "subract": 83, "substitut": 81, "sucept": [71, 79, 83, 87], "sudo": 76, "suffici": 94, "sum": [14, 15, 16, 37, 49, 50, 65, 79, 81, 82, 84, 86, 88, 89, 96], "sum_": [13, 14, 15, 16, 30, 32, 33, 34, 35, 37, 46, 47, 48, 49, 50, 61, 63, 65, 66, 67, 68, 69, 79, 81, 82, 83, 84, 85, 86, 89, 90, 92], "sum_j": [65, 79], "sum_k": 90, "sum_l": 90, "summar": 89, "summat": [34, 81, 83, 84, 86, 92], "super_lattic": 79, "super_lattice_unit": 79, "supercel": 79, "superconduct": [34, 35, 79, 81, 89, 91], "superior": 96, "superlattic": 79, "superscript": 81, "supplementari": 81, "suppli": 89, "support": 1, "sure": [0, 91], "suscept": [0, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 33, 65, 73, 81, 84, 86, 88], "susceptbilitii": [87, 94], "susceptbl": [88, 94], "susceptibilit": 84, "susceptibilitli": 96, "susceptibilti": 81, "susceptibitl": 0, "susceptibl": 96, "svg": 89, "sx": 90, "sy": 0, "symbol": [83, 85], "symmet": 85, "symmetr": [79, 81, 82, 83, 84, 89], "symmetri": [0, 79, 81, 89, 91, 92, 94, 96], "symmetrize_fct": [79, 91], "symmetrize_freq_even_mom_even": 91, "symmetrize_freq_odd_mom_odd": 91, "synopsi": [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72], "syntax": 76, "system": [77, 81, 82, 83, 84, 87, 91, 92, 93], "sz": [90, 92], "t": [0, 1, 6, 34, 35, 38, 39, 79, 80, 81, 83, 84, 85, 89, 90, 91, 92, 93, 94], "t2g": 96, "t_": 81, "t_r": 90, "tab": 0, "tabl": 81, "tackl": 81, "tag": 76, "tai": 9, "tail": [14, 15, 16, 49, 72, 79], "take": [0, 1, 35, 79, 80, 81, 89, 91, 92, 93], "taken": [65, 79, 84], "takimoto": [81, 84], "tan": 81, "tarbal": 0, "target": [0, 51, 52, 53, 54, 55, 56, 57, 58, 66, 67, 68, 69, 79], "target_rank": [79, 88], "target_shap": [0, 88, 89, 92, 93], "target_t": 0, "task": 81, "tau": [6, 9, 10, 11, 22, 23, 25, 31, 35, 42, 44, 48, 49, 65, 79, 80, 82, 83, 85, 90, 91, 92], "tau_": [80, 83, 85, 86], "tau_a": [83, 85, 86], "tau_b": [80, 83, 86], "tau_c": 86, "tau_d": [80, 83, 86], "tau_v": 86, "taylor": 94, "tb": 79, "tb_lattic": 79, "tblattic": [73, 79, 89, 90, 92, 93], "tbsuperlattic": [73, 79], "technic": 89, "temperatur": [46, 47, 65, 79, 81, 89], "temperature_to_beta": 89, "templat": [79, 89], "tensor": [72, 73, 79, 92], "tensor_real_valu": 79, "term": [65, 79, 81, 83, 84, 86, 89, 90, 96], "test": 76, "text": [30, 46, 47, 79, 81, 83, 92], "textrm": [80, 93, 94], "than": [65, 76, 81, 94], "thank": [0, 77], "thei": [81, 82, 83, 84, 89], "them": [81, 89, 91, 95], "themselv": 89, "theorem": [0, 35, 81, 83], "theoret": 81, "theori": [79, 81, 91, 94, 96], "ther": 93, "therefor": [35, 81, 84, 89, 91, 94, 96], "thermodynam": [83, 94], "thi": [0, 30, 75, 79, 81, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96], "thing": 88, "think": 84, "those": [1, 81], "thread": 0, "three": [79, 80, 86, 87, 92, 96], "through": [76, 79, 87, 91, 93], "thu": [80, 85, 86], "thunstrom": 79, "tick": [79, 92], "tight": [73, 88], "tight_bind": [79, 89, 90, 91, 92, 93], "tight_binding_model": 96, "tight_layout": [87, 90, 92], "tightbind": 79, "tild": [89, 90, 96], "time": [0, 6, 10, 11, 13, 18, 19, 22, 23, 25, 26, 31, 34, 35, 38, 39, 42, 44, 49, 65, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 96], "titl": [87, 90, 92], "togeth": 35, "tol": 79, "toler": 79, "tool": [90, 91, 92], "top": 79, "total": [49, 79, 86], "toward": 81, "tp": 79, "tprf": [0, 1, 51, 52, 53, 54, 55, 56, 57, 58, 66, 67, 68, 69, 77, 83, 84, 87, 89, 92, 93, 94, 96], "tr": [80, 92], "trace": [80, 85, 92], "track": 81, "tradit": 96, "transfer": [81, 92], "transform": [0, 12, 17, 22, 24, 25, 26, 31, 35, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 65, 73, 79, 81, 84, 86, 92], "transit": [81, 89], "translat": [81, 83, 85], "transpos": 82, "trapetzoid": 23, "travel": 79, "treat": [89, 92], "treatment": 81, "tremblai": 81, "tri": 79, "triangl": [79, 96], "triangular": [29, 79], "tripl": 80, "triplet": [0, 30, 34, 35, 79, 81], "triq": [1, 75, 76, 77, 79, 84, 87, 88, 89, 90, 91, 92, 93, 96], "triqs_cthyb": [93, 94], "triqs_pi": 0, "triqs_tprf": [2, 76, 78, 79, 81, 84, 87, 88, 89, 90, 91, 92, 93, 94, 96], "triqsvar": 76, "trivial": [80, 83, 85], "true": [79, 92, 93, 94, 96], "truncat": 87, "tune": 92, "tupl": [31, 72, 79, 89], "turn": 94, "tutori": [0, 89, 96], "twice": 79, "two": [0, 7, 8, 20, 21, 51, 52, 53, 54, 55, 56, 57, 58, 65, 66, 67, 68, 69, 73, 81, 83, 84, 85, 86, 87, 89, 90, 91, 92, 94, 96], "txt": 77, "type": [2, 79, 89, 90], "typo": 0, "u": [0, 1, 30, 46, 47, 65, 71, 73, 74, 77, 79, 81, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96], "u_": [46, 47, 65, 71, 79, 81, 84], "u_abcd": [84, 90], "u_c": [84, 90], "u_d": 79, "u_m": 79, "u_vec": [90, 92], "ubuntu": 0, "uc": 90, "ueda": 81, "ugli": 79, "um": 90, "un_": 93, "under": [1, 81, 83, 84, 89, 96], "uniform": 94, "uniqu": 84, "unit": [79, 90, 92, 93], "unitari": [46, 47, 65, 79], "uniti": [51, 52, 53, 54, 79, 81, 90], "unpack_index_site_orbit": 79, "unphys": [79, 81], "unrestrict": 84, "unstabl": 0, "until": 89, "up": [79, 87, 90, 92, 93, 94], "uparrow": [79, 84, 87, 89, 90, 92, 93, 94], "updat": 0, "upf": 95, "upf_fil": 95, "upper": [79, 90], "us": [0, 1, 7, 8, 16, 30, 59, 60, 61, 62, 63, 64, 65, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 96], "usag": 89, "user_guid": 96, "utf": 0, "util": [0, 73, 89, 90, 91, 92, 93, 94, 96], "v": [32, 33, 79, 81, 84, 86, 92, 94], "v3": 0, "v_": [32, 33, 37, 46, 47, 49, 50, 79], "v_abcd": 92, "v_fk": [32, 33, 79], "v_int_abcd": 92, "v_k": [32, 33, 37, 46, 47, 49, 50, 79], "v_wk": [32, 33], "val": 90, "valid": [0, 81, 84], "valu": [5, 36, 46, 47, 51, 52, 53, 54, 55, 56, 57, 58, 65, 66, 67, 68, 69, 72, 79, 84, 85, 87, 92, 94], "value1": 76, "value2": 76, "value_t": [0, 46, 47, 79], "van": [0, 92], "vari": 96, "variabl": [76, 83, 91], "variou": [0, 89], "vartheta": [83, 85], "vec": 79, "vec2mat": 79, "vector": [79, 92], "veld": [0, 1], "verbos": 79, "veri": [89, 94], "versa": [84, 89], "version": [1, 77, 81], "vert_": 82, "vertex": [27, 28, 29, 30, 34, 35, 71, 73, 75, 79, 84, 88, 89, 92, 96], "vertic": [0, 73, 81, 83, 84], "via": [34, 35, 46, 47, 79, 89, 91], "vice": [84, 89], "view": 0, "visual": [92, 94], "visula": [93, 94], "vmax": 92, "vmin": 92, "vstack": 92, "w": [32, 33, 46, 47, 49, 79, 90, 93, 94, 96], "w2dyn_cthyb": 96, "w2dynam": 96, "w2dynamics_interfac": 96, "w_": [32, 33, 46, 47, 48, 49, 79], "w_fk": [46, 47, 79], "w_tr": 48, "w_wk": 49, "wa": [1, 83, 89], "wai": [0, 80, 84, 86, 92, 94], "walk": 91, "wannier": [79, 96], "wannier90": [0, 73, 96], "want": [74, 76, 89, 90, 91], "warn": [0, 93], "warranti": 1, "we": [0, 35, 74, 76, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 94, 96], "websit": 76, "weiss": 93, "well": 77, "wentzel": [0, 1], "were": 84, "wf": 87, "wget": 95, "what": [83, 90], "when": [0, 16, 65, 79, 81, 83, 84, 86, 94], "whenc": [82, 87], "where": [30, 37, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 65, 66, 67, 68, 69, 76, 79, 80, 81, 84, 85, 86, 89, 91, 92, 93, 94, 96], "which": [0, 5, 31, 35, 36, 65, 72, 77, 79, 81, 83, 84, 86, 87, 89, 91, 92, 94], "while": [79, 80, 81, 84, 87, 89], "whole": 94, "whoos": 87, "whose": 79, "why": 73, "wick": [83, 84], "window": [94, 96], "wise": 82, "wish": 89, "within": [86, 94, 96], "withn": 96, "without": [1, 14, 15, 19, 81, 83, 84, 89], "wk": 90, "wkabcd": 90, "wmesh": [79, 89, 90, 91, 92], "wmesh_boson": 89, "wmesh_boson_kmesh": 89, "wmesh_lind": 92, "word": [79, 82], "work": [79, 91, 96], "worm": 96, "wors": 65, "would": [81, 87], "wout": [79, 96], "wq": 92, "wqabcd": 92, "write": [81, 83, 84, 86], "written": 1, "x": [73, 79, 87, 89, 90, 92, 96], "x_": 96, "x_j": 89, "xi": [79, 80, 82, 83, 85, 89], "xlabel": [87, 90, 92], "xleftarrow": 89, "xlim": 87, "xrightarrow": 89, "xtick": 92, "y": [1, 76, 89], "y_j": 89, "yanas": 81, "yann": 0, "yet": 81, "yield": [80, 81, 82, 86, 89], "ylabel": [87, 90, 92], "ylim": 87, "you": [74, 76, 77, 79, 84, 89, 91, 96], "your": [76, 77, 96], "z": [79, 80, 87, 92], "zeeman": [79, 89], "zero": [0, 11, 23, 31, 72, 79, 81, 90, 92, 93, 94], "zero_t": 0, "zeros_lik": [87, 92], "zeroth": 84, "zingl": 0, "zip": 92, "zone": [79, 89, 91, 92, 94]}, "titles": ["Changelog", "Authors", "<no title>", "triqs_tprf", "triqs_tprf::add_dynamic_and_static", "triqs_tprf::bose", "triqs_tprf::chi0_Tr_from_g_Tr_PH", "triqs_tprf::chi0_from_gg2_PH", "triqs_tprf::chi0_from_gg2_PP", "triqs_tprf::chi0_tau_from_g_tau_PH", "triqs_tprf::chi0_tr_from_grt_PH", "triqs_tprf::chi0_w0r_from_grt_PH", "triqs_tprf::chi0q_from_chi0r", "triqs_tprf::chi0q_from_g_wk_PH", "triqs_tprf::chi0q_sum_nu", "triqs_tprf::chi0q_sum_nu_q", "triqs_tprf::chi0q_sum_nu_tail_corr_PH", "triqs_tprf::chi0r_from_chi0q", "triqs_tprf::chi0r_from_gr_PH", "triqs_tprf::chi0r_from_gr_PH_nompi", "triqs_tprf::chi_from_gg2_PH", "triqs_tprf::chi_from_gg2_PP", "triqs_tprf::chi_tr_from_chi_wr", "triqs_tprf::chi_w0r_from_chi_tr", "triqs_tprf::chi_wk_from_chi_wr", "triqs_tprf::chi_wr_from_chi_tr", "triqs_tprf::chi_wr_from_chi_wk", "triqs_tprf::chiq_from_chi0q_and_gamma_PH", "triqs_tprf::chiq_sum_nu_from_chi0q_and_gamma_PH", "triqs_tprf::chiq_sum_nu_from_chi0q_and_gamma_and_L_wn_PH", "triqs_tprf::construct_phi_wk", "triqs_tprf::dynamic_and_constant_to_tr", "triqs_tprf::dynamical_screened_interaction_W", "triqs_tprf::dynamical_screened_interaction_W_from_generalized_susceptibility", "triqs_tprf::eliashberg_product", "triqs_tprf::eliashberg_product_fft", "triqs_tprf::fermi", "triqs_tprf::fock_sigma", "triqs_tprf::fourier_Tk_to_Tr", "triqs_tprf::fourier_Tr_to_Tk", "triqs_tprf::fourier_fk_to_fr", "triqs_tprf::fourier_fr_to_fk", "triqs_tprf::fourier_tr_to_wr", "triqs_tprf::fourier_wk_to_wr", "triqs_tprf::fourier_wr_to_tr", "triqs_tprf::fourier_wr_to_wk", "triqs_tprf::g0w_dynamic_sigma", "triqs_tprf::g0w_sigma", "triqs_tprf::gw_dynamic_sigma", "triqs_tprf::gw_sigma", "triqs_tprf::hartree_sigma", "triqs_tprf::identity", "triqs_tprf::identity_PH", "triqs_tprf::identity_PH_bar", "triqs_tprf::identity_PP", "triqs_tprf::inverse", "triqs_tprf::inverse_PH", "triqs_tprf::inverse_PH_bar", "triqs_tprf::inverse_PP", "triqs_tprf::lattice_dyson_g0_fk", "triqs_tprf::lattice_dyson_g0_wk", "triqs_tprf::lattice_dyson_g_f", "triqs_tprf::lattice_dyson_g_fk", "triqs_tprf::lattice_dyson_g_w", "triqs_tprf::lattice_dyson_g_wk", "triqs_tprf::lindhard_chi00", "triqs_tprf::product", "triqs_tprf::product_PH", "triqs_tprf::product_PH_bar", "triqs_tprf::product_PP", "triqs_tprf::rho_k_from_g_wk", "triqs_tprf::solve_rpa_PH", "triqs_tprf::split_into_dynamic_wk_and_constant_k", "Documentation", "Frequently-asked questions", "The Two-Particle Response Function tool box (TPRF)", "Packaged Versions of TPRF", "Reporting issues", "Lattice Green\u2019s functions", "Lattice Green\u2019s functions", "(Anti-)Periodicity", "Linearized Eliashberg Equation", "Linear response", "Response function notation", "Random phase approximation (RPA)", "On the single particle Green\u2019s function", "Vertex functions", "Bethe-Salpeter Equation (BSE) on the Hubbard atom", "Lattice Bethe-Salpeter Equation (BSE)", "Linearized Eliashberg equation on the attractive Hubbard model", "Mean field and RPA response for the one dimensional Hubbard model.", "Solving the linearized Eliashberg equation in the random phase approximation limit", "Square lattice susceptibility and the Random Phase Approximation (RPA)", "DMFT self consistent framework", "DMFT lattice susceptibility", "Pseudo potentials used", "Spin susceptibility in Sr2RuO4"], "titleterms": {"": [0, 78, 79, 80, 85, 87], "0": [0, 75], "1": [0, 91], "2": [0, 75, 91], "3": [0, 75, 91], "4": 91, "On": 85, "The": 75, "add_dynamic_and_stat": 4, "algebra": [78, 79], "alias": 3, "an": 82, "anaconda": 76, "analyt": [78, 79, 87, 90], "anti": 80, "antisymmetr": 84, "appli": [82, 94], "applic": 81, "approxim": [0, 78, 79, 81, 84, 91, 92], "ask": 74, "atom": [78, 79, 87], "attract": 89, "author": 1, "bar": 86, "bare": [83, 87, 92], "bc": 81, "beth": [0, 78, 79, 83, 86, 87, 88, 94, 96], "between": 84, "bind": [79, 92], "bose": 5, "boundari": 80, "box": 75, "bse": [0, 83, 87, 88], "bubbl": 78, "c": 73, "calcul": [84, 90, 93, 94], "changelog": 0, "channel": [83, 86], "chi": [83, 87], "chi0": 0, "chi0_from_gg2_ph": 7, "chi0_from_gg2_pp": 8, "chi0_tau_from_g_tau_ph": 9, "chi0_tr_from_g_tr_ph": 6, "chi0_tr_from_grt_ph": 10, "chi0_w0r_from_grt_ph": 11, "chi0q_from_chi0r": 12, "chi0q_from_g_wk_ph": 13, "chi0q_sum_nu": 14, "chi0q_sum_nu_q": 15, "chi0q_sum_nu_tail_corr_ph": 16, "chi0r_from_chi0q": 17, "chi0r_from_gr_ph": 18, "chi0r_from_gr_ph_nompi": 19, "chi_": 92, "chi_0": [83, 87, 92], "chi_from_gg2_ph": 20, "chi_from_gg2_pp": 21, "chi_tr_from_chi_wr": 22, "chi_w0r_from_chi_tr": 23, "chi_wk_from_chi_wr": 24, "chi_wr_from_chi_tr": 25, "chi_wr_from_chi_wk": 26, "chiq_from_chi0q_and_gamma_ph": 27, "chiq_sum_nu_from_chi0q_and_gamma_and_l_wn_ph": 29, "chiq_sum_nu_from_chi0q_and_gamma_ph": 28, "cmake": [0, 76], "collect": 79, "compat": [0, 76], "compil": 76, "condit": [80, 81], "consist": [93, 94], "construct": 91, "construct_phi_wk": 30, "converg": 87, "cross": [83, 86], "custom": 76, "dbse": 0, "debian": 76, "decoupl": 90, "densiti": 91, "depend": 84, "deriv": [81, 86], "detail": [81, 93], "dimension": 90, "disclaim": 1, "discret": 0, "dispers": 92, "dlr": 0, "dmft": [93, 94], "doc": 0, "docker": 76, "document": [0, 73], "dual": [0, 79, 96], "dynamic_and_constant_to_tr": 31, "dynamical_screened_interaction_w": 32, "dynamical_screened_interaction_w_from_generalized_suscept": 33, "eliashberg": [0, 78, 79, 81, 89, 91], "eliashberg_product": 34, "eliashberg_product_fft": 35, "epsilon": 92, "equat": [0, 78, 79, 81, 83, 86, 87, 88, 89, 91, 94, 96], "even": 91, "exampl": 84, "experiment": 76, "extern": 82, "f": [83, 86], "faq": 73, "featur": 74, "fermi": [36, 92], "field": [82, 85, 90, 94], "fock": [0, 79], "fock_sigma": 37, "fourier": 0, "fourier_fk_to_fr": 40, "fourier_fr_to_fk": 41, "fourier_tk_to_tr": 38, "fourier_tr_to_tk": 39, "fourier_tr_to_wr": 42, "fourier_wk_to_wr": 43, "fourier_wr_to_tr": 44, "fourier_wr_to_wk": 45, "framework": 93, "frequenc": [83, 86, 87, 91], "frequent": 74, "from": [76, 81, 82, 94], "full": [83, 87], "fulli": 86, "function": [3, 75, 78, 79, 80, 83, 85, 86, 87, 91, 92], "g0w_dynamic_sigma": 46, "g0w_sigma": 47, "g_": 87, "gamma_m": 87, "gap": 81, "gener": [0, 78, 79, 80, 82, 83, 92], "green": [78, 79, 80, 85, 87], "gw": [0, 78, 79], "gw_dynamic_sigma": 48, "gw_sigma": 49, "hamiltonian": 92, "hartre": [0, 79], "hartree_sigma": 50, "hedin": 0, "hf": 0, "hole": [83, 86, 89], "hubbard": [78, 79, 87, 89, 90], "i": [74, 87], "ident": 51, "identity_ph": 52, "identity_ph_bar": 53, "identity_pp": 54, "implement": [74, 93], "impur": [78, 79], "independ": 84, "instal": 76, "interact": [78, 79, 84], "invers": 55, "inverse_ph": 56, "inverse_ph_bar": 57, "inverse_pp": 58, "irreduc": 81, "issu": 77, "k": 92, "km": 80, "kubo": 80, "lattic": [78, 79, 88, 89, 92, 94], "lattice_dyson_g0_fk": 59, "lattice_dyson_g0_wk": 60, "lattice_dyson_g_f": 61, "lattice_dyson_g_fk": 62, "lattice_dyson_g_w": 63, "lattice_dyson_g_wk": 64, "lehmann": 0, "licens": 1, "limit": 91, "lindhard": 78, "lindhard_chi00": 65, "linear": [78, 79, 81, 82, 89, 91], "local": 94, "magnet": 91, "mainten": 0, "manual": 73, "map": 84, "martin": 80, "mathbf": 92, "matrix": 84, "matsubara": [83, 85, 86], "mean": 90, "model": [79, 89, 90], "momentum": 91, "non": [78, 79], "normal": 81, "notat": [73, 83], "odd": 91, "omega_n": 87, "one": 90, "oper": [78, 79, 85], "option": 76, "packag": 76, "paramet": [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 79], "parametr": 86, "parser": 79, "particl": [75, 78, 79, 80, 81, 83, 85, 86, 87, 89, 91], "period": 80, "ph": [83, 86, 87], "phase": [78, 79, 81, 84, 91, 92], "physic": 92, "potenti": 95, "pp": 86, "ppx": [83, 86], "prerequisit": 76, "product": [66, 86], "product_ph": 67, "product_ph_bar": 68, "product_pp": 69, "pseudo": 95, "py": 0, "py3": 0, "python": [0, 73], "q": 74, "quantiti": 84, "question": 74, "random": [78, 79, 81, 84, 91, 92], "reduc": [83, 86], "refer": 73, "relat": [81, 86], "report": 77, "represent": 0, "respons": [75, 78, 79, 82, 83, 90, 92], "return": [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72], "rho_k_from_g_wk": 70, "rpa": [78, 84, 90, 91, 92], "s_z": 92, "salpet": [0, 78, 79, 83, 86, 87, 88, 94, 96], "schwinger": 80, "self": [93, 94], "semi": 89, "setup": 93, "sigma": 87, "singl": [85, 87], "solv": [89, 91, 93], "solve_rpa_ph": 71, "solver": 79, "sourc": 76, "spin": [84, 96], "split_into_dynamic_wk_and_constant_k": 72, "spot": 81, "squar": [89, 92], "sr2ruo4": 96, "state": 81, "step": [76, 93], "summari": 94, "support": 0, "surfac": 92, "suscept": [78, 79, 82, 83, 87, 90, 92, 94, 96], "susceptibilti": 91, "symmetr": 91, "templat": [51, 52, 53, 54, 55, 66, 67, 68, 69], "tensor": [84, 90], "theori": 73, "tight": [79, 92], "tool": 75, "tprf": [75, 76, 90], "transform": [83, 85, 89], "triq": 0, "triqs_tprf": [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72], "tutori": 73, "two": [75, 78, 79, 80], "type": 3, "u": 84, "ubuntu": 76, "us": 95, "util": 79, "valu": 90, "version": [0, 76], "vertex": [81, 83, 86, 87, 91, 94], "vertic": 86, "wannier90": 79, "why": 74, "window": 87, "x": 74}}) \ No newline at end of file +Search.setIndex({"alltitles": {"(Anti-)Periodicity": [[80, null]], "1. Construct the density- and magnetic-susceptibilties in RPA": [[91, "1.-Construct-the-density--and-magnetic-susceptibilties-in-RPA"]], "2. Construct the particle-particle vertex in RPA": [[91, "2.-Construct-the-particle-particle-vertex-in-RPA"]], "3. Construct the symmetrizing functions": [[91, "3.-Construct-the-symmetrizing-functions"]], "4. Solve the linearized Eliashberg equation": [[91, "4.-Solve-the-linearized-Eliashberg-equation"]], "Anaconda (experimental)": [[76, "anaconda-experimental"]], "Analytic susceptibility": [[90, "Analytic-susceptibility"]], "Analytic vertex \\Gamma_m^{(PH)}": [[87, "Analytic-vertex-\\Gamma_m^{(PH)}"]], "Antisymmetrized interaction tensor U": [[84, "antisymmetrized-interaction-tensor-u"]], "Authors": [[1, null]], "BSE frequency window convergence": [[87, "BSE-frequency-window-convergence"]], "Bare and full susceptibility \\chi_0 and \\chi": [[87, "Bare-and-full-susceptibility-\\chi_0-and-\\chi"]], "Bare generalized susceptibility \\chi_0": [[83, "bare-generalized-susceptibility-chi-0"], [92, "Bare-generalized-susceptibility-\\chi_0"]], "Bethe-Salpeter Equation (BSE) for \\Gamma_m^{(PH)}": [[87, "Bethe-Salpeter-Equation-(BSE)-for-\\Gamma_m^{(PH)}"]], "Bethe-Salpeter Equation (BSE) on the Hubbard atom": [[87, null]], "Bethe-Salpeter equation (BSE)": [[0, "bethe-salpeter-equation-bse"]], "Bethe-Salpeter equations (BSE)": [[83, "bethe-salpeter-equations-bse"]], "Bethe-Salpeter equations for the fully reducible vertex F": [[86, "bethe-salpeter-equations-for-the-fully-reducible-vertex-f"]], "C++ reference manual": [[73, "c-reference-manual"]], "Changelog": [[0, null]], "Chi0": [[0, "chi0"]], "Compiling TPRF from source": [[76, "compiling-tprf-from-source"]], "Crossed-Particle-Particle channel (PPx)": [[86, "crossed-particle-particle-channel-ppx"]], "Crossed-Particle-particle channel (PPx)": [[83, "crossed-particle-particle-channel-ppx"]], "Custom CMake options": [[76, "custom-cmake-options"]], "DMFT Self-Consistent Step": [[93, "dmft-self-consistent-step"]], "DMFT lattice susceptibility": [[94, null]], "DMFT local vertex": [[94, "dmft-local-vertex"]], "DMFT self consistent framework": [[93, null]], "Derivation: Product relations": [[86, "derivation-product-relations"]], "Deriving the linearized Eliashberg equation from the normal state": [[81, "deriving-the-linearized-eliashberg-equation-from-the-normal-state"]], "Details for applications": [[81, "details-for-applications"]], "Disclaimer": [[1, "disclaimer"]], "Discrete Lehmann Representation (DLR) support": [[0, "discrete-lehmann-representation-dlr-support"], [0, "id2"]], "Dispersion \\epsilon(\\mathbf{k}) and Fermi surface": [[92, "Dispersion-\\epsilon(\\mathbf{k})-and-Fermi-surface"]], "Docker": [[76, "docker"]], "Documentation": [[0, "documentation"], [73, null]], "Dual Bethe-Salpeter Equation": [[79, "dual-bethe-salpeter-equation"]], "Dual Bethe-Salpeter Equation (DBSE)": [[0, "dual-bethe-salpeter-equation-dbse"]], "Dual Bethe-Salpeter equation": [[96, "dual-bethe-salpeter-equation"]], "Eliashberg": [[0, "eliashberg"]], "Example": [[84, "example"]], "FAQs": [[73, "faqs"]], "Field operator Matsubara transforms": [[85, "field-operator-matsubara-transforms"]], "Frequency: Even, Momentum: Even": [[91, "Frequency:-Even,-Momentum:-Even"]], "Frequency: Odd, Momentum: Odd": [[91, "Frequency:-Odd,-Momentum:-Odd"]], "Frequently-asked questions": [[74, null]], "From an applied external field": [[82, "from-an-applied-external-field"]], "From the generalized susceptibility": [[82, "from-the-generalized-susceptibility"]], "Full generalized particle-hole susceptibility \\chi": [[83, "full-generalized-particle-hole-susceptibility-chi"]], "Fully reducible vertex F": [[86, "fully-reducible-vertex-f"]], "Functions": [[3, "functions"]], "GW approximation": [[78, "gw-approximation"], [79, "gw-approximation"]], "General": [[0, "general"], [0, "id3"], [0, "id6"]], "Generalization to two-particle Green\u2019s functions": [[80, "generalization-to-two-particle-green-s-functions"]], "Generalized bubble susceptibility (for RPA)": [[78, "generalized-bubble-susceptibility-for-rpa"]], "Generalized impurity susceptibility": [[78, "generalized-impurity-susceptibility"]], "Generalized susceptibility \\chi": [[83, "generalized-susceptibility-chi"]], "Generalized susceptibility and the Bethe-Salpeter equation": [[78, "generalized-susceptibility-and-the-bethe-salpeter-equation"]], "Hartree-Fock": [[0, "hartree-fock"]], "Hartree-Fock and Hartree solvers": [[79, "hartree-fock-and-hartree-solvers"]], "Hedin\u2019s GW approximation": [[0, "hedins-gw-approximation"]], "Hubbard atom analytic response functions": [[78, "hubbard-atom-analytic-response-functions"], [79, "hubbard-atom-analytic-response-functions"]], "Hubbard model on a square lattice": [[89, "Hubbard-model-on-a-square-lattice"]], "Implementation details": [[93, "implementation-details"]], "Impurity susceptibility and Bethe-Salpeter Equation": [[79, "impurity-susceptibility-and-bethe-salpeter-equation"]], "Installation steps": [[76, "installation-steps"]], "Interaction": [[84, "interaction"]], "Kubo-Martin-Schwinger (KMS) boundary conditions": [[80, "kubo-martin-schwinger-kms-boundary-conditions"]], "Lattice Bethe-Salpeter Equation": [[79, "lattice-bethe-salpeter-equation"], [94, "lattice-bethe-salpeter-equation"]], "Lattice Bethe-Salpeter Equation (BSE)": [[88, null]], "Lattice Green\u2019s functions": [[78, null], [79, null]], "Lattice susceptibility from the Bethe-Salpeter Equation": [[94, "lattice-susceptibility-from-the-bethe-salpeter-equation"]], "License": [[1, "license"]], "Lindhard non-interacting generalized susceptibility": [[78, "lindhard-non-interacting-generalized-susceptibility"]], "Linear response": [[82, null]], "Linearized Eliashberg Equation": [[81, null]], "Linearized Eliashberg equation": [[78, "linearized-eliashberg-equation"], [79, "linearized-eliashberg-equation"]], "Linearized Eliashberg equation on the attractive Hubbard model": [[89, null]], "Maintenance": [[0, "maintenance"]], "Mapping between spin-dependent and independent quantities": [[84, "mapping-between-spin-dependent-and-independent-quantities"]], "Matrix RPA": [[84, "id1"]], "Matsubara frequency parametrization": [[86, "matsubara-frequency-parametrization"]], "Matsubara frequency transforms": [[83, "matsubara-frequency-transforms"]], "Mean field and RPA response for the one dimensional Hubbard model.": [[90, null]], "Mean-field decoupling": [[90, "Mean-field-decoupling"]], "Non-interacting generalized susceptibility": [[79, "non-interacting-generalized-susceptibility"]], "On the single particle Green\u2019s function": [[85, null]], "Packaged Versions of TPRF": [[76, null]], "Parameter collections": [[79, "parameter-collections"]], "Parameters": [[4, "parameters"], [5, "parameters"], [6, "parameters"], [7, "parameters"], [8, "parameters"], [9, "parameters"], [10, "parameters"], [11, "parameters"], [12, "parameters"], [13, "parameters"], [14, "parameters"], [15, "parameters"], [16, "parameters"], [17, "parameters"], [18, "parameters"], [19, "parameters"], [20, "parameters"], [21, "parameters"], [22, "parameters"], [23, "parameters"], [24, "parameters"], [25, "parameters"], [26, "parameters"], [27, "parameters"], [28, "parameters"], [29, "parameters"], [30, "parameters"], [31, "parameters"], [32, "parameters"], [33, "parameters"], [34, "parameters"], [35, "parameters"], [36, "parameters"], [37, "parameters"], [38, "parameters"], [39, "parameters"], [40, "parameters"], [41, "parameters"], [42, "parameters"], [43, "parameters"], [44, "parameters"], [45, "parameters"], [46, "parameters"], [47, "parameters"], [48, "parameters"], [49, "parameters"], [50, "parameters"], [51, "parameters"], [52, "parameters"], [53, "parameters"], [54, "parameters"], [55, "parameters"], [56, "parameters"], [57, "parameters"], [58, "parameters"], [59, "parameters"], [60, "parameters"], [61, "parameters"], [62, "parameters"], [63, "parameters"], [64, "parameters"], [65, "parameters"], [66, "parameters"], [67, "parameters"], [68, "parameters"], [69, "parameters"], [70, "parameters"], [71, "parameters"], [72, "parameters"]], "Particle-Hole channel (PH)": [[86, "particle-hole-channel-ph"]], "Particle-Particle channel (PP)": [[86, "particle-particle-channel-pp"]], "Particle-hole channel (PH)": [[83, "particle-hole-channel-ph"]], "Physical response function \\chi_{S_z, S_z}": [[92, "Physical-response-function-\\chi_{S_z,-S_z}"]], "Prerequisites": [[76, "prerequisites"]], "Pseudo potentials used": [[95, null]], "Python reference manual": [[73, "python-reference-manual"]], "Q: Why is not feature X implemented?": [[74, "q-why-is-not-feature-x-implemented"]], "Random Phase Approximation": [[78, "random-phase-approximation"], [79, "random-phase-approximation"]], "Random phase approximation (RPA)": [[84, null], [92, "Random-phase-approximation-(RPA)"]], "Random phase approximation for the irreducible particle-particle vertex": [[81, "random-phase-approximation-for-the-irreducible-particle-particle-vertex"]], "Reducible vertex function F": [[83, "reducible-vertex-function-f"]], "Relation to the BCS gap equation": [[81, "relation-to-the-bcs-gap-equation"]], "Reporting issues": [[77, null]], "Response function notation": [[83, null]], "Returns": [[4, "returns"], [5, "returns"], [6, "returns"], [7, "returns"], [8, "returns"], [9, "returns"], [10, "returns"], [11, "returns"], [12, "returns"], [13, "returns"], [14, "returns"], [15, "returns"], [16, "returns"], [17, "returns"], [18, "returns"], [19, "returns"], [20, "returns"], [21, "returns"], [22, "returns"], [23, "returns"], [24, "returns"], [25, "returns"], [26, "returns"], [27, "returns"], [28, "returns"], [29, "returns"], [30, "returns"], [31, "returns"], [32, "returns"], [33, "returns"], [34, "returns"], [35, "returns"], [36, "returns"], [37, "returns"], [38, "returns"], [39, "returns"], [40, "returns"], [41, "returns"], [42, "returns"], [43, "returns"], [44, "returns"], [45, "returns"], [46, "returns"], [47, "returns"], [48, "returns"], [49, "returns"], [50, "returns"], [51, "returns"], [52, "returns"], [53, "returns"], [54, "returns"], [55, "returns"], [56, "returns"], [57, "returns"], [58, "returns"], [59, "returns"], [60, "returns"], [61, "returns"], [62, "returns"], [63, "returns"], [64, "returns"], [65, "returns"], [66, "returns"], [67, "returns"], [68, "returns"], [69, "returns"], [70, "returns"], [71, "returns"], [72, "returns"]], "SPOT Condition": [[81, "spot-condition"]], "Self consistent calculations in applied field": [[94, "self-consistent-calculations-in-applied-field"]], "Semi particle-hole transformation": [[89, "Semi-particle-hole-transformation"]], "Setup DMFT Calculation": [[93, "setup-dmft-calculation"]], "Single-particle Green\u2019s function G_{\\sigma \\sigma'}(i\\omega_n)": [[87, "Single-particle-Green's-function-G_{\\sigma-\\sigma'}(i\\omega_n)"]], "Solve Self-Consistent DMFT": [[93, "solve-self-consistent-dmft"]], "Solving the linearized Eliashberg equation": [[89, "Solving-the-linearized-Eliashberg-equation"]], "Solving the linearized Eliashberg equation in the random phase approximation limit": [[91, null]], "Spin susceptibility in Sr2RuO4": [[96, null]], "Spin-independent RPA calculations": [[84, "spin-independent-rpa-calculations"]], "Square lattice susceptibility and the Random Phase Approximation (RPA)": [[92, null]], "Summary": [[94, "summary"]], "TPRF tensor valued calculation": [[90, "TPRF-tensor-valued-calculation"]], "TRIQS compatibility": [[0, "triqs-compatibility"]], "Template parameters": [[51, "template-parameters"], [52, "template-parameters"], [53, "template-parameters"], [54, "template-parameters"], [55, "template-parameters"], [66, "template-parameters"], [67, "template-parameters"], [68, "template-parameters"], [69, "template-parameters"]], "The Two-Particle Response Function tool box (TPRF)": [[75, null]], "Theory and notation": [[73, "theory-and-notation"]], "Tight binding Hamiltonian": [[92, "Tight-binding-Hamiltonian"]], "Tight binding lattice model": [[79, "tight-binding-lattice-model"]], "Tutorials": [[73, "tutorials"]], "Two-particle Green\u2019s functions": [[80, "two-particle-green-s-functions"]], "Two-particle response function linear-algebra operations": [[78, "two-particle-response-function-linear-algebra-operations"], [79, "two-particle-response-function-linear-algebra-operations"]], "Type aliases": [[3, "type-aliases"]], "Ubuntu Debian packages": [[76, "ubuntu-debian-packages"]], "Utility functions": [[79, "utility-functions"]], "Version 2.1.1": [[0, "version-2-1-1"]], "Version 2.2.0": [[0, "version-2-2-0"]], "Version 3.0.0": [[0, "version-3-0-0"]], "Version 3.1.0": [[0, "version-3-1-0"]], "Version 3.1.1": [[0, "version-3-1-1"]], "Version 3.2.0": [[0, "version-3-2-0"]], "Version 3.2.1": [[0, "version-3-2-1"]], "Version compatibility": [[76, "version-compatibility"]], "Vertex functions": [[86, null]], "Vertical-Particle-Hole channel (\\bar{PH})": [[86, "vertical-particle-hole-channel-bar-ph"]], "Wannier90 tight binding parsers": [[79, "wannier90-tight-binding-parsers"]], "cmake": [[0, "cmake"]], "doc": [[0, "doc"], [0, "id4"], [0, "id5"]], "fourier": [[0, "fourier"]], "hf": [[0, "hf"]], "py": [[0, "py"]], "py3": [[0, "py3"]], "python": [[0, "python"]], "tprf 3.2.0": [[75, null]], "triqs_tprf": [[3, null]], "triqs_tprf::add_dynamic_and_static": [[4, null]], "triqs_tprf::bose": [[5, null]], "triqs_tprf::chi0_Tr_from_g_Tr_PH": [[6, null]], "triqs_tprf::chi0_from_gg2_PH": [[7, null]], "triqs_tprf::chi0_from_gg2_PP": [[8, null]], "triqs_tprf::chi0_tau_from_g_tau_PH": [[9, null]], "triqs_tprf::chi0_tr_from_grt_PH": [[10, null]], "triqs_tprf::chi0_w0r_from_grt_PH": [[11, null]], "triqs_tprf::chi0q_from_chi0r": [[12, null]], "triqs_tprf::chi0q_from_g_wk_PH": [[13, null]], "triqs_tprf::chi0q_sum_nu": [[14, null]], "triqs_tprf::chi0q_sum_nu_q": [[15, null]], "triqs_tprf::chi0q_sum_nu_tail_corr_PH": [[16, null]], "triqs_tprf::chi0r_from_chi0q": [[17, null]], "triqs_tprf::chi0r_from_gr_PH": [[18, null]], "triqs_tprf::chi0r_from_gr_PH_nompi": [[19, null]], "triqs_tprf::chi_from_gg2_PH": [[20, null]], "triqs_tprf::chi_from_gg2_PP": [[21, null]], "triqs_tprf::chi_tr_from_chi_wr": [[22, null]], "triqs_tprf::chi_w0r_from_chi_tr": [[23, null]], "triqs_tprf::chi_wk_from_chi_wr": [[24, null]], "triqs_tprf::chi_wr_from_chi_tr": [[25, null]], "triqs_tprf::chi_wr_from_chi_wk": [[26, null]], "triqs_tprf::chiq_from_chi0q_and_gamma_PH": [[27, null]], "triqs_tprf::chiq_sum_nu_from_chi0q_and_gamma_PH": [[28, null]], "triqs_tprf::chiq_sum_nu_from_chi0q_and_gamma_and_L_wn_PH": [[29, null]], "triqs_tprf::construct_phi_wk": [[30, null]], "triqs_tprf::dynamic_and_constant_to_tr": [[31, null]], "triqs_tprf::dynamical_screened_interaction_W": [[32, null]], "triqs_tprf::dynamical_screened_interaction_W_from_generalized_susceptibility": [[33, null]], "triqs_tprf::eliashberg_product": [[34, null]], "triqs_tprf::eliashberg_product_fft": [[35, null]], "triqs_tprf::fermi": [[36, null]], "triqs_tprf::fock_sigma": [[37, null]], "triqs_tprf::fourier_Tk_to_Tr": [[38, null]], "triqs_tprf::fourier_Tr_to_Tk": [[39, null]], "triqs_tprf::fourier_fk_to_fr": [[40, null]], "triqs_tprf::fourier_fr_to_fk": [[41, null]], "triqs_tprf::fourier_tr_to_wr": [[42, null]], "triqs_tprf::fourier_wk_to_wr": [[43, null]], "triqs_tprf::fourier_wr_to_tr": [[44, null]], "triqs_tprf::fourier_wr_to_wk": [[45, null]], "triqs_tprf::g0w_dynamic_sigma": [[46, null]], "triqs_tprf::g0w_sigma": [[47, null]], "triqs_tprf::gw_dynamic_sigma": [[48, null]], "triqs_tprf::gw_sigma": [[49, null]], "triqs_tprf::hartree_sigma": [[50, null]], "triqs_tprf::identity": [[51, null]], "triqs_tprf::identity_PH": [[52, null]], "triqs_tprf::identity_PH_bar": [[53, null]], "triqs_tprf::identity_PP": [[54, null]], "triqs_tprf::inverse": [[55, null]], "triqs_tprf::inverse_PH": [[56, null]], "triqs_tprf::inverse_PH_bar": [[57, null]], "triqs_tprf::inverse_PP": [[58, null]], "triqs_tprf::lattice_dyson_g0_fk": [[59, null]], "triqs_tprf::lattice_dyson_g0_wk": [[60, null]], "triqs_tprf::lattice_dyson_g_f": [[61, null]], "triqs_tprf::lattice_dyson_g_fk": [[62, null]], "triqs_tprf::lattice_dyson_g_w": [[63, null]], "triqs_tprf::lattice_dyson_g_wk": [[64, null]], "triqs_tprf::lindhard_chi00": [[65, null]], "triqs_tprf::product": [[66, null]], "triqs_tprf::product_PH": [[67, null]], "triqs_tprf::product_PH_bar": [[68, null]], "triqs_tprf::product_PP": [[69, null]], "triqs_tprf::rho_k_from_g_wk": [[70, null]], "triqs_tprf::solve_rpa_PH": [[71, null]], "triqs_tprf::split_into_dynamic_wk_and_constant_k": [[72, null]]}, "docnames": ["ChangeLog", "about", "cpp2rst_generated/contents", "cpp2rst_generated/triqs_tprf", "cpp2rst_generated/triqs_tprf/add_dynamic_and_static", "cpp2rst_generated/triqs_tprf/bose", "cpp2rst_generated/triqs_tprf/chi0_Tr_from_g_Tr_PH", "cpp2rst_generated/triqs_tprf/chi0_from_gg2_PH", "cpp2rst_generated/triqs_tprf/chi0_from_gg2_PP", "cpp2rst_generated/triqs_tprf/chi0_tau_from_g_tau_PH", "cpp2rst_generated/triqs_tprf/chi0_tr_from_grt_PH", "cpp2rst_generated/triqs_tprf/chi0_w0r_from_grt_PH", "cpp2rst_generated/triqs_tprf/chi0q_from_chi0r", "cpp2rst_generated/triqs_tprf/chi0q_from_g_wk_PH", "cpp2rst_generated/triqs_tprf/chi0q_sum_nu", "cpp2rst_generated/triqs_tprf/chi0q_sum_nu_q", "cpp2rst_generated/triqs_tprf/chi0q_sum_nu_tail_corr_PH", "cpp2rst_generated/triqs_tprf/chi0r_from_chi0q", "cpp2rst_generated/triqs_tprf/chi0r_from_gr_PH", "cpp2rst_generated/triqs_tprf/chi0r_from_gr_PH_nompi", "cpp2rst_generated/triqs_tprf/chi_from_gg2_PH", "cpp2rst_generated/triqs_tprf/chi_from_gg2_PP", "cpp2rst_generated/triqs_tprf/chi_tr_from_chi_wr", "cpp2rst_generated/triqs_tprf/chi_w0r_from_chi_tr", "cpp2rst_generated/triqs_tprf/chi_wk_from_chi_wr", "cpp2rst_generated/triqs_tprf/chi_wr_from_chi_tr", "cpp2rst_generated/triqs_tprf/chi_wr_from_chi_wk", "cpp2rst_generated/triqs_tprf/chiq_from_chi0q_and_gamma_PH", "cpp2rst_generated/triqs_tprf/chiq_sum_nu_from_chi0q_and_gamma_PH", "cpp2rst_generated/triqs_tprf/chiq_sum_nu_from_chi0q_and_gamma_and_L_wn_PH", "cpp2rst_generated/triqs_tprf/construct_phi_wk", "cpp2rst_generated/triqs_tprf/dynamic_and_constant_to_tr", "cpp2rst_generated/triqs_tprf/dynamical_screened_interaction_W", "cpp2rst_generated/triqs_tprf/dynamical_screened_interaction_W_from_generalized_susceptibility", "cpp2rst_generated/triqs_tprf/eliashberg_product", "cpp2rst_generated/triqs_tprf/eliashberg_product_fft", "cpp2rst_generated/triqs_tprf/fermi", "cpp2rst_generated/triqs_tprf/fock_sigma", "cpp2rst_generated/triqs_tprf/fourier_Tk_to_Tr", "cpp2rst_generated/triqs_tprf/fourier_Tr_to_Tk", "cpp2rst_generated/triqs_tprf/fourier_fk_to_fr", "cpp2rst_generated/triqs_tprf/fourier_fr_to_fk", "cpp2rst_generated/triqs_tprf/fourier_tr_to_wr", "cpp2rst_generated/triqs_tprf/fourier_wk_to_wr", "cpp2rst_generated/triqs_tprf/fourier_wr_to_tr", "cpp2rst_generated/triqs_tprf/fourier_wr_to_wk", "cpp2rst_generated/triqs_tprf/g0w_dynamic_sigma", "cpp2rst_generated/triqs_tprf/g0w_sigma", "cpp2rst_generated/triqs_tprf/gw_dynamic_sigma", "cpp2rst_generated/triqs_tprf/gw_sigma", "cpp2rst_generated/triqs_tprf/hartree_sigma", "cpp2rst_generated/triqs_tprf/identity", "cpp2rst_generated/triqs_tprf/identity_PH", "cpp2rst_generated/triqs_tprf/identity_PH_bar", "cpp2rst_generated/triqs_tprf/identity_PP", "cpp2rst_generated/triqs_tprf/inverse", "cpp2rst_generated/triqs_tprf/inverse_PH", "cpp2rst_generated/triqs_tprf/inverse_PH_bar", "cpp2rst_generated/triqs_tprf/inverse_PP", "cpp2rst_generated/triqs_tprf/lattice_dyson_g0_fk", "cpp2rst_generated/triqs_tprf/lattice_dyson_g0_wk", "cpp2rst_generated/triqs_tprf/lattice_dyson_g_f", "cpp2rst_generated/triqs_tprf/lattice_dyson_g_fk", "cpp2rst_generated/triqs_tprf/lattice_dyson_g_w", "cpp2rst_generated/triqs_tprf/lattice_dyson_g_wk", "cpp2rst_generated/triqs_tprf/lindhard_chi00", "cpp2rst_generated/triqs_tprf/product", "cpp2rst_generated/triqs_tprf/product_PH", "cpp2rst_generated/triqs_tprf/product_PH_bar", "cpp2rst_generated/triqs_tprf/product_PP", "cpp2rst_generated/triqs_tprf/rho_k_from_g_wk", "cpp2rst_generated/triqs_tprf/solve_rpa_PH", "cpp2rst_generated/triqs_tprf/split_into_dynamic_wk_and_constant_k", "documentation", "faqs", "index", "install", "issues", "reference/cpp_reference", "reference/python_reference", "theory/boundary_conditions", "theory/eliashberg", "theory/linear_response", "theory/notation", "theory/rpa", "theory/single_particle_gf", "theory/vertex", "user_guide/Bethe-Salpeter Equation on the Hubbard atom", "user_guide/Lattice BSE on Hubbard atom", "user_guide/Linearized Eliashberg equation on the attractive Hubbard model", "user_guide/Mean field and RPA response of the one dimensional Hubbard model", "user_guide/Solving the linearized Eliashberg equation in the random phase approximation limit", "user_guide/Square lattice susceptibility", "user_guide/dmft_susceptibility/dmft_framework", "user_guide/dmft_susceptibility/dmft_susceptibility", "user_guide/dmft_susceptibility_dbse/calc_dft/pseudo/README", "user_guide/dmft_susceptibility_dbse/dmft_susceptibility_dbse"], "envversion": {"nbsphinx": 4, "sphinx": 62, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinx.ext.todo": 2, "sphinx.ext.viewcode": 1}, "filenames": ["ChangeLog.md", "about.rst", "cpp2rst_generated/contents.rst", "cpp2rst_generated/triqs_tprf.rst", "cpp2rst_generated/triqs_tprf/add_dynamic_and_static.rst", "cpp2rst_generated/triqs_tprf/bose.rst", "cpp2rst_generated/triqs_tprf/chi0_Tr_from_g_Tr_PH.rst", "cpp2rst_generated/triqs_tprf/chi0_from_gg2_PH.rst", "cpp2rst_generated/triqs_tprf/chi0_from_gg2_PP.rst", "cpp2rst_generated/triqs_tprf/chi0_tau_from_g_tau_PH.rst", "cpp2rst_generated/triqs_tprf/chi0_tr_from_grt_PH.rst", "cpp2rst_generated/triqs_tprf/chi0_w0r_from_grt_PH.rst", "cpp2rst_generated/triqs_tprf/chi0q_from_chi0r.rst", "cpp2rst_generated/triqs_tprf/chi0q_from_g_wk_PH.rst", "cpp2rst_generated/triqs_tprf/chi0q_sum_nu.rst", "cpp2rst_generated/triqs_tprf/chi0q_sum_nu_q.rst", "cpp2rst_generated/triqs_tprf/chi0q_sum_nu_tail_corr_PH.rst", "cpp2rst_generated/triqs_tprf/chi0r_from_chi0q.rst", "cpp2rst_generated/triqs_tprf/chi0r_from_gr_PH.rst", "cpp2rst_generated/triqs_tprf/chi0r_from_gr_PH_nompi.rst", "cpp2rst_generated/triqs_tprf/chi_from_gg2_PH.rst", "cpp2rst_generated/triqs_tprf/chi_from_gg2_PP.rst", "cpp2rst_generated/triqs_tprf/chi_tr_from_chi_wr.rst", "cpp2rst_generated/triqs_tprf/chi_w0r_from_chi_tr.rst", "cpp2rst_generated/triqs_tprf/chi_wk_from_chi_wr.rst", "cpp2rst_generated/triqs_tprf/chi_wr_from_chi_tr.rst", "cpp2rst_generated/triqs_tprf/chi_wr_from_chi_wk.rst", "cpp2rst_generated/triqs_tprf/chiq_from_chi0q_and_gamma_PH.rst", "cpp2rst_generated/triqs_tprf/chiq_sum_nu_from_chi0q_and_gamma_PH.rst", "cpp2rst_generated/triqs_tprf/chiq_sum_nu_from_chi0q_and_gamma_and_L_wn_PH.rst", "cpp2rst_generated/triqs_tprf/construct_phi_wk.rst", "cpp2rst_generated/triqs_tprf/dynamic_and_constant_to_tr.rst", "cpp2rst_generated/triqs_tprf/dynamical_screened_interaction_W.rst", "cpp2rst_generated/triqs_tprf/dynamical_screened_interaction_W_from_generalized_susceptibility.rst", "cpp2rst_generated/triqs_tprf/eliashberg_product.rst", "cpp2rst_generated/triqs_tprf/eliashberg_product_fft.rst", "cpp2rst_generated/triqs_tprf/fermi.rst", "cpp2rst_generated/triqs_tprf/fock_sigma.rst", "cpp2rst_generated/triqs_tprf/fourier_Tk_to_Tr.rst", "cpp2rst_generated/triqs_tprf/fourier_Tr_to_Tk.rst", "cpp2rst_generated/triqs_tprf/fourier_fk_to_fr.rst", "cpp2rst_generated/triqs_tprf/fourier_fr_to_fk.rst", "cpp2rst_generated/triqs_tprf/fourier_tr_to_wr.rst", "cpp2rst_generated/triqs_tprf/fourier_wk_to_wr.rst", "cpp2rst_generated/triqs_tprf/fourier_wr_to_tr.rst", "cpp2rst_generated/triqs_tprf/fourier_wr_to_wk.rst", "cpp2rst_generated/triqs_tprf/g0w_dynamic_sigma.rst", "cpp2rst_generated/triqs_tprf/g0w_sigma.rst", "cpp2rst_generated/triqs_tprf/gw_dynamic_sigma.rst", "cpp2rst_generated/triqs_tprf/gw_sigma.rst", "cpp2rst_generated/triqs_tprf/hartree_sigma.rst", "cpp2rst_generated/triqs_tprf/identity.rst", "cpp2rst_generated/triqs_tprf/identity_PH.rst", "cpp2rst_generated/triqs_tprf/identity_PH_bar.rst", "cpp2rst_generated/triqs_tprf/identity_PP.rst", "cpp2rst_generated/triqs_tprf/inverse.rst", "cpp2rst_generated/triqs_tprf/inverse_PH.rst", "cpp2rst_generated/triqs_tprf/inverse_PH_bar.rst", "cpp2rst_generated/triqs_tprf/inverse_PP.rst", "cpp2rst_generated/triqs_tprf/lattice_dyson_g0_fk.rst", "cpp2rst_generated/triqs_tprf/lattice_dyson_g0_wk.rst", "cpp2rst_generated/triqs_tprf/lattice_dyson_g_f.rst", "cpp2rst_generated/triqs_tprf/lattice_dyson_g_fk.rst", "cpp2rst_generated/triqs_tprf/lattice_dyson_g_w.rst", "cpp2rst_generated/triqs_tprf/lattice_dyson_g_wk.rst", "cpp2rst_generated/triqs_tprf/lindhard_chi00.rst", "cpp2rst_generated/triqs_tprf/product.rst", "cpp2rst_generated/triqs_tprf/product_PH.rst", "cpp2rst_generated/triqs_tprf/product_PH_bar.rst", "cpp2rst_generated/triqs_tprf/product_PP.rst", "cpp2rst_generated/triqs_tprf/rho_k_from_g_wk.rst", "cpp2rst_generated/triqs_tprf/solve_rpa_PH.rst", "cpp2rst_generated/triqs_tprf/split_into_dynamic_wk_and_constant_k.rst", "documentation.rst", "faqs.rst", "index.rst", "install.rst", "issues.rst", "reference/cpp_reference.rst", "reference/python_reference.rst", "theory/boundary_conditions.rst", "theory/eliashberg.rst", "theory/linear_response.rst", "theory/notation.rst", "theory/rpa.rst", "theory/single_particle_gf.rst", "theory/vertex.rst", "user_guide/Bethe-Salpeter Equation on the Hubbard atom.ipynb", "user_guide/Lattice BSE on Hubbard atom.ipynb", "user_guide/Linearized Eliashberg equation on the attractive Hubbard model.ipynb", "user_guide/Mean field and RPA response of the one dimensional Hubbard model.ipynb", "user_guide/Solving the linearized Eliashberg equation in the random phase approximation limit.ipynb", "user_guide/Square lattice susceptibility.ipynb", "user_guide/dmft_susceptibility/dmft_framework.rst", "user_guide/dmft_susceptibility/dmft_susceptibility.rst", "user_guide/dmft_susceptibility_dbse/calc_dft/pseudo/README.md", "user_guide/dmft_susceptibility_dbse/dmft_susceptibility_dbse.rst"], "indexentries": {}, "objects": {"triqs_tprf.ParameterCollection": [[79, 0, 1, "", "ParameterCollection"], [79, 0, 1, "", "ParameterCollections"], [79, 2, 1, "", "parameter_scan"]], "triqs_tprf.ParameterCollection.ParameterCollection": [[79, 1, 1, "", "alter"], [79, 1, 1, "", "convert_keys_from_string_to_python"], [79, 1, 1, "", "copy"]], "triqs_tprf.analytic_hubbard_atom": [[79, 2, 1, "", "analytic_hubbard_atom"]], "triqs_tprf.bse": [[79, 2, 1, "", "get_chi0_nk_at_specific_w"], [79, 2, 1, "", "get_chi0_wnk"], [79, 2, 1, "", "solve_lattice_bse"], [79, 2, 1, "", "solve_lattice_bse_at_specific_w"], [79, 2, 1, "", "solve_local_bse"]], "triqs_tprf.chi_from_gg2": [[79, 2, 1, "", "chi0_from_gg2_PH"], [79, 2, 1, "", "chi0_from_gg2_PP"], [79, 2, 1, "", "chi_from_gg2_PH"], [79, 2, 1, "", "chi_from_gg2_PP"]], "triqs_tprf.dbse": [[79, 2, 1, "", "impurity_reducible_vertex_F"], [79, 2, 1, "", "solve_lattice_dbse"]], "triqs_tprf.eliashberg": [[79, 2, 1, "", "construct_gamma_singlet_rpa"], [79, 2, 1, "", "construct_gamma_triplet_rpa"], [79, 2, 1, "", "implicitly_restarted_arnoldi_method"], [79, 2, 1, "", "power_method_LR"], [79, 2, 1, "", "preprocess_gamma_for_fft"], [79, 2, 1, "", "semi_random_initial_delta"], [79, 2, 1, "", "solve_eliashberg"]], "triqs_tprf.gw": [[79, 2, 1, "", "bubble_PI_wk"], [79, 2, 1, "", "g0w_sigma"], [79, 2, 1, "", "gw_sigma"]], "triqs_tprf.gw_solver": [[79, 0, 1, "", "GWSolver"]], "triqs_tprf.hf_response": [[79, 0, 1, "", "HartreeFockResponse"], [79, 0, 1, "", "HartreeResponse"]], "triqs_tprf.hf_solver": [[79, 0, 1, "", "HartreeFockSolver"], [79, 0, 1, "", "HartreeSolver"]], "triqs_tprf.hf_solver.HartreeFockSolver": [[79, 1, 1, "", "mat2vec"], [79, 1, 1, "", "solve_iter"], [79, 1, 1, "", "solve_newton"], [79, 1, 1, "", "solve_newton_mu"], [79, 1, 1, "", "vec2mat"]], "triqs_tprf.hf_solver.HartreeSolver": [[79, 1, 1, "", "mat2vec"], [79, 1, 1, "", "vec2mat"]], "triqs_tprf.lattice": [[79, 2, 1, "", "dynamical_screened_interaction_W"], [79, 2, 1, "", "dynamical_screened_interaction_W_from_generalized_susceptibility"], [79, 2, 1, "", "lattice_dyson_g0_fk"], [79, 2, 1, "", "lattice_dyson_g0_wk"], [79, 2, 1, "", "lattice_dyson_g_f"], [79, 2, 1, "", "lattice_dyson_g_fk"], [79, 2, 1, "", "lattice_dyson_g_w"], [79, 2, 1, "", "lattice_dyson_g_wk"], [79, 2, 1, "", "lindhard_chi00"], [79, 2, 1, "", "solve_rpa_PH"]], "triqs_tprf.lattice_utils": [[79, 2, 1, "", "chi_contraction"], [79, 2, 1, "", "imtime_bubble_chi0_wk"], [79, 2, 1, "", "k_space_path"]], "triqs_tprf.linalg": [[79, 2, 1, "", "identity_PH"], [79, 2, 1, "", "identity_PH_bar"], [79, 2, 1, "", "identity_PP"], [79, 2, 1, "", "inverse_PH"], [79, 2, 1, "", "inverse_PH_bar"], [79, 2, 1, "", "inverse_PP"], [79, 2, 1, "", "product_PH"], [79, 2, 1, "", "product_PH_bar"], [79, 2, 1, "", "product_PP"]], "triqs_tprf.rpa_tensor": [[79, 2, 1, "", "kanamori_quartic_tensor"]], "triqs_tprf.super_lattice": [[79, 0, 1, "", "TBSuperLattice"]], "triqs_tprf.super_lattice.TBSuperLattice": [[79, 1, 1, "", "change_coordinates_L_to_SL"], [79, 1, 1, "", "change_coordinates_SL_to_L"], [79, 1, 1, "", "cluster_sites"], [79, 1, 1, "", "fold"], [79, 1, 1, "", "pack_index_site_orbital"], [79, 1, 1, "", "unpack_index_site_orbital"]], "triqs_tprf.tight_binding": [[79, 0, 1, "", "TBLattice"], [79, 2, 1, "", "create_square_lattice"]], "triqs_tprf.tight_binding.TBLattice": [[79, 1, 1, "", "dispersion"], [79, 1, 1, "", "fourier"], [79, 1, 1, "", "get_kmesh"], [79, 1, 1, "", "get_rmesh"], [79, 1, 1, "", "lattice_to_real_coordinates"], [79, 3, 1, "", "n_orbitals"], [79, 3, 1, "", "ndim"], [79, 3, 1, "", "orbital_names"], [79, 3, 1, "", "orbital_positions"], [79, 3, 1, "", "units"]], "triqs_tprf.wannier90": [[79, 2, 1, "", "parse_band_structure_from_wannier90_band_dat"], [79, 2, 1, "", "parse_hopping_from_wannier90_hr_dat"], [79, 2, 1, "", "parse_lattice_vectors_from_wannier90_wout"], [79, 2, 1, "", "parse_reciprocal_lattice_vectors_from_wannier90_wout"]]}, "objnames": {"0": ["py", "class", "Python class"], "1": ["py", "method", "Python method"], "2": ["py", "function", "Python function"], "3": ["py", "property", "Python property"]}, "objtypes": {"0": "py:class", "1": "py:method", "2": "py:function", "3": "py:property"}, "terms": {"": [1, 4, 6, 7, 8, 9, 10, 11, 13, 18, 19, 20, 21, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 59, 60, 61, 62, 63, 64, 65, 70, 72, 73, 81, 83, 84, 86, 88, 89, 90, 91, 92, 93, 94, 96], "0": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96], "00": [65, 79, 90, 92], "0000": 84, "000000": 94, "0001": 84, "0006233689973519351": 90, "00062337": 90, "000623370447305363": 90, "0006233708712780279": 90, "000623377300450557": 90, "00062338": 90, "0010": 84, "0011": 84, "00803835": 90, "008038350017700799": 90, "008038350082891664": 90, "008038353137584412": 90, "00803835402874193": 90, "00928508742243029": 90, "009285087431502552": 90, "00928509": 90, "009285091093955294": 90, "009285091325941902": 90, "00989": 87, "01": [91, 92], "0100": 84, "0101": 84, "0110": 84, "0111": 84, "01311808": 90, "01563585": 90, "01567305": 90, "0182822": 90, "02": 90, "03": [90, 92], "03776486": 90, "0380558": 90, "03d": [94, 96], "04": [76, 90], "04030009": 90, "04102537": 90, "04983329": 90, "05": [79, 92, 94], "05132797": 90, "05157": 96, "05174012": 90, "0517401229191": 90, "05174012291931889": 90, "05385591": 90, "05649209": 90, "05974364": 90, "05986393": 90, "06": [90, 92], "06554954": 90, "06566533e": 90, "06603175": 90, "06701196": 90, "06777702": 90, "07266601": 90, "07315558": 90, "07412951": 90, "075159": 86, "07632445": 90, "07709171": 90, "08126425": 90, "08361562": 90, "09": 79, "09080281": 90, "09252033": 90, "09540358": 90, "09822362": 90, "0_": 79, "0f": 92, "0j": 90, "0x111ae2e10": 90, "1": [4, 5, 14, 15, 16, 22, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 42, 43, 44, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 71, 76, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96], "10": [79, 81, 87, 89, 90, 91, 92, 93, 94, 96], "100": [79, 90, 91, 92, 96], "1000": [84, 89], "10000": [93, 94], "100000": 79, "1001": 84, "1010": 84, "1011": 84, "1024": [91, 92], "1038736": 90, "104504": [81, 84], "10468123": 90, "10646747": 90, "11": [87, 90, 91, 92], "1100": 84, "1101": 84, "11076694": 90, "1110": 84, "1111": 84, "11171870e": 90, "11254103e": 90, "114500689705": 90, "11450068970500865": 90, "117": 81, "12": [76, 87, 90, 91, 92, 94], "12056333": 90, "125120": 96, "12686976e": 90, "13": [87, 90, 91, 92], "14": [90, 91, 92], "14793390983942026": 90, "14793391": 90, "149": 81, "15": [90, 91, 92, 94], "16": [90, 92, 93, 94, 96], "160": 87, "162159026185": 90, "16215902618552902": 90, "162159026186": 90, "16215903": 90, "16401061": 90, "16401061009292597": 90, "16401061042857704": 90, "17": [90, 92], "17501856": 90, "17726125649": 90, "1772612564906984": 90, "17726126": 90, "18": [87, 90], "1805": 87, "18258079": 90, "18258079328307353": 90, "18582577e": 90, "1965": 81, "1d": 79, "1e": [79, 90, 93, 96], "1e9": 94, "2": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 96], "20": [87, 94, 96], "200": [91, 92], "2003": 81, "2004": [81, 84], "2006": 81, "2013": 81, "2014": 94, "2016": [81, 86], "2018": [79, 90], "2019": [81, 92, 96], "20629071e": 90, "22": 76, "229001379409": 90, "22900137941001733": 90, "22900138": 90, "2306": 96, "234": 88, "235105": 94, "235107": 79, "237": 81, "248": 88, "25": [87, 90, 94], "25150193e": 90, "256": 90, "29125322e": 90, "296": 81, "2c": 90, "2d": [79, 93], "2e": 94, "2f": [90, 92], "2j": [81, 84], "2n": [83, 85], "2n_": [34, 35, 81], "2nd": 23, "2t": 90, "2to3": 0, "2u": [81, 84, 89], "3": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 96], "30": [92, 96], "31308159e": 90, "32": [89, 91, 92], "33000857e": 90, "337": 79, "3472": 94, "3479": 94, "37789780e": 90, "387": 81, "39": 90, "4": [30, 32, 33, 47, 64, 65, 71, 72, 76, 79, 81, 83, 84, 86, 87, 88, 89, 90, 92, 94, 96], "40": [87, 94, 96], "400": [90, 93, 94], "4000": [93, 94], "41": 89, "41473132": 90, "41535998": 90, "43": 90, "43270332": 90, "43419406": 90, "45005": 81, "4d": 96, "4t": 92, "5": [47, 64, 79, 81, 87, 88, 89, 90, 91, 92, 93, 94, 96], "50": [79, 89], "500": 90, "52372064e": 90, "5861047169392135": 88, "5e6": 94, "6": [47, 79, 81, 87, 88, 89, 90, 91, 92, 94, 96], "60": 92, "636154": 92, "67458502e": 90, "69": [81, 84], "7": [81, 87, 88, 89, 90, 91, 92], "72": 96, "75": [87, 92], "77228579e": 90, "77547464e": 90, "8": [81, 87, 88, 89, 90, 91, 92, 94, 96], "80": 87, "800": 90, "85918250e": 90, "8e6": 93, "9": [81, 87, 88, 89, 90, 91, 92], "90": 94, "91": 81, "94": 86, "98": 79, "992": 88, "9999705817306739": 89, "A": [51, 52, 53, 54, 66, 67, 68, 69, 71, 74, 76, 79, 81, 84, 89, 90, 92, 93], "And": [84, 91, 92], "As": 80, "At": 81, "But": [81, 84, 91], "By": [81, 88, 91], "For": [75, 76, 79, 80, 81, 84, 87, 88, 89, 91, 92, 93, 94], "If": [74, 77, 79, 83, 84, 89, 96], "In": [1, 30, 76, 77, 79, 80, 81, 82, 83, 84, 86, 89, 91, 92, 94, 96], "It": [0, 30, 81, 85, 89], "Its": 79, "No": 90, "Not": 93, "ON": 76, "On": 73, "One": [79, 89], "Or": 84, "The": [0, 1, 5, 30, 31, 32, 33, 36, 49, 55, 56, 57, 58, 65, 66, 67, 68, 69, 76, 79, 80, 81, 82, 83, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 96], "Then": 89, "There": 88, "These": [81, 83, 96], "To": [76, 80, 84, 87, 89, 92, 94], "With": [79, 84, 87, 88, 89, 92], "_": [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 46, 47, 49, 51, 52, 53, 54, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 79, 80, 81, 82, 83, 84, 86, 89, 90, 92, 94, 96], "_0": [83, 84, 86], "_1": 84, "__repr__": 90, "_band": 79, "_c": [83, 86], "_hr": 79, "_index": 79, "_j": 89, "_m": [79, 94], "_n": 85, "_nk_": 96, "a_": [51, 52, 53, 54, 66, 67, 68, 69, 79], "aabb": [46, 47], "ab": [4, 7, 8, 9, 20, 21, 35, 37, 46, 47, 48, 49, 50, 66, 67, 68, 69, 70, 79, 80, 86, 87, 88, 90, 92, 93], "abab": 79, "abbrevi": 83, "abcd": [32, 33, 37, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 66, 67, 68, 69, 72, 79, 86, 92, 94, 96], "abef": [32, 33, 79], "abid": 81, "about": 77, "abov": [76, 84, 86, 87, 91, 93], "abrikosov": 81, "absolut": 79, "ac": 86, "access": [79, 89], "accident": 92, "accord": 83, "account": [84, 89, 91], "accuraci": [79, 94], "acdb": [37, 49], "achiev": 86, "action": 81, "ad": [0, 80], "adapt": 88, "add": [0, 4, 35, 79], "add_dynamic_and_stat": 3, "addit": [76, 80, 89, 90, 92], "addition": 89, "adher": 0, "adjust": 0, "advantag": [0, 35, 84], "affect": 79, "afm": 89, "after": [76, 79, 83], "against": 0, "agreement": 94, "aim": 75, "al": [46, 47, 79, 81, 84, 94], "alexand": 0, "algebra": 73, "algorithm": 79, "alias": 2, "align": 91, "all": [0, 30, 76, 77, 79, 80, 81, 84, 85, 87, 89, 91, 92, 96], "alloc": [51, 52, 53, 54, 55, 56, 57, 58, 66, 67, 68, 69, 79], "allow": [77, 81, 84, 91], "along": [79, 92, 94], "alpha": [51, 52, 53, 54, 55, 56, 57, 58, 66, 67, 68, 69, 79, 81, 84, 87], "alpha_": 84, "alreadi": [84, 96], "also": [0, 1, 76, 81, 87, 88, 89, 91, 92, 94, 96], "alter": [79, 89], "altern": 92, "amd": 94, "amp": [90, 91, 92], "amput": [86, 96], "an": [0, 61, 62, 63, 64, 73, 76, 79, 80, 81, 84, 85, 87, 88, 89, 92, 94, 96], "ana": 87, "anaconda": 0, "analys": 86, "analyt": [0, 65, 73, 81, 88, 92], "analytic_hubbard_atom": [73, 79, 87, 88], "angular": [79, 89], "ani": [1, 76, 79, 84, 86, 89, 92], "annihil": [80, 89], "anomal": [79, 80], "anti": [73, 82, 83, 85], "anticommut": 82, "antiferromagnet": 89, "antisymmetr": 73, "anyth": 90, "app4triq": 0, "appear": 86, "append": [92, 93], "appli": [73, 79, 83], "applic": [0, 1, 73, 76, 77, 82], "approach": [82, 87, 94], "approx": [30, 81, 84, 89, 90, 91, 92, 94], "approxim": [30, 71, 73, 75, 87, 88, 89], "apprxim": 92, "appyl": 94, "apt": 76, "ar": [0, 30, 46, 47, 65, 66, 67, 68, 69, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 94, 96], "arang": 92, "arch": 79, "archiv": 79, "arg": [79, 90], "argument": [79, 93, 94], "arnoldi": [0, 79], "arrai": [47, 79, 86, 87, 90, 91], "array_const_view": 79, "array_contiguous_view": [30, 71], "arriv": 80, "arxiv": [87, 96], "ask": 73, "assert": 92, "associ": [79, 81, 86], "assum": [76, 80], "assur": 79, "atleast": 79, "atom": [73, 88], "attract": 73, "attribut": 79, "author": 90, "automat": 79, "avail": [76, 93, 94, 96], "avoid": [0, 81], "axi": [65, 87, 92, 96], "ayral": 86, "b": [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 34, 35, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 79, 80, 81, 82, 83, 84, 85, 86, 89, 90, 92, 93, 94], "b_": [66, 67, 68, 69, 79], "ba": [20, 21, 37, 49, 50, 79], "back": [49, 79, 92], "balatski": 81, "band": [79, 81, 91, 94, 96], "bandwidth": 92, "bar": [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 34, 35, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 53, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 73, 79, 80, 81, 82, 83, 84, 85, 94], "bardeen": 81, "bare": [32, 33, 46, 47, 71, 73, 79, 81, 84, 86, 88, 91], "base": [0, 75, 79, 84, 93, 94, 96], "basi": [1, 79], "basic": 75, "bc": [7, 8, 9, 73, 79, 80, 86], "bcast": 94, "bd": [84, 86], "becaus": [79, 81, 84, 89], "beceom": 81, "becom": [80, 81, 86], "been": [0, 1], "befor": [79, 89, 91], "begin": [81, 84, 86, 91], "beht": 94, "below": [0, 76, 81, 84, 92, 93, 94], "benchmark": 89, "beta": [7, 8, 9, 11, 13, 14, 15, 16, 18, 19, 20, 21, 23, 30, 34, 35, 37, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 65, 66, 67, 68, 69, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "beta_": [81, 84], "beth": [27, 28, 29, 73, 75, 81, 84, 92], "better": 87, "between": [0, 73, 79, 81, 82, 89], "bicker": 81, "big": [35, 71, 79, 80, 84, 86, 90, 92], "biggest": 79, "bind": [73, 88], "bipartit": 89, "bj": [46, 47, 65, 79], "bl": [79, 88], "block": [79, 87], "block_iw_ab_to_matrix_valu": 87, "block_list": 87, "blockgf": [87, 93], "blockgf_data": 93, "bodi": 81, "bool": 79, "bose": 3, "boson": [0, 12, 13, 14, 15, 16, 17, 18, 19, 30, 65, 79, 80, 81, 82, 83, 85, 87, 89, 92, 94], "both": [35, 76, 81, 84, 86, 96], "boundari": [73, 79, 89], "box": [90, 91, 92], "bracket": [0, 79], "braket": 89, "bravai": 79, "bravaislattic": [79, 88], "break": [81, 93], "brentq": 90, "brillouin": [79, 89, 91, 92, 94], "brillouin_zon": 79, "brillouinzon": [79, 88], "broaden": [46, 47, 59, 61, 62, 65, 79], "broke": 0, "brute": 82, "brzone": [46, 47, 79], "bse": [73, 79, 81, 92, 94, 96], "bubbl": [6, 7, 8, 9, 10, 11, 13, 18, 19, 27, 28, 29, 32, 65, 71, 73, 79, 81, 84, 90, 91, 92, 94, 96], "bubble_pi_wk": [73, 79], "bug": [0, 1, 77], "bugfix": 0, "build": [0, 76, 77, 79, 91, 92], "bz": [79, 88, 92], "bzmesh": 88, "c": [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 34, 35, 39, 51, 52, 53, 54, 55, 56, 57, 58, 65, 66, 67, 68, 69, 71, 75, 76, 79, 80, 81, 82, 83, 84, 85, 86, 89, 90, 92, 94], "c_": [79, 83, 85, 89, 90, 92], "c_dag": 90, "ca": 86, "calc_chi": 96, "calc_dft": 96, "calc_g2": 96, "calc_sc_dmft": 96, "calc_tri": 96, "calcuat": 93, "calcul": [0, 23, 32, 33, 35, 37, 46, 47, 48, 49, 50, 65, 73, 76, 79, 81, 87, 88, 89, 91, 96], "calculu": [65, 79], "call": [76, 79, 81, 83, 89, 91, 92, 93], "callabl": 79, "can": [0, 30, 74, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 94], "cancel": 84, "cannot": 0, "care": [], "carefulli": 86, "carlo": [0, 94, 96], "carri": 84, "case": [77, 80, 81, 84, 87, 89, 90, 91, 92], "cast": [55, 56, 57, 58, 66, 67, 68, 69, 79], "caution": 79, "cc": 84, "ccc": 84, "cd": [35, 37, 48, 49, 50, 76, 79, 80, 84, 90, 92], "cdot": [7, 8, 9, 13, 18, 19, 20, 21, 32, 33, 59, 60, 61, 62, 63, 64, 65, 79, 85, 86, 92], "cell": 79, "central": 82, "cf": 75, "ch": [51, 52, 53, 54, 55, 66, 67, 68, 69, 90], "chang": [0, 75, 79, 89], "change_coordinates_l_to_sl": 79, "change_coordinates_sl_to_l": 79, "changelog": 75, "channel": [6, 7, 8, 9, 10, 11, 13, 18, 19, 20, 21, 30, 34, 35, 51, 52, 53, 54, 55, 56, 57, 58, 65, 66, 67, 68, 69, 71, 73, 75, 79, 81, 84, 87, 92, 94], "channel_t": [51, 55, 66], "chapter": 86, "charact": 89, "charg": 84, "check": 0, "checkout": [76, 89], "chemic": [0, 46, 47, 59, 60, 61, 62, 63, 64, 65, 79, 89], "chi": [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 27, 28, 29, 30, 33, 65, 71, 72, 73, 79, 81, 82, 84, 86, 90, 91, 92, 94, 96], "chi0": [7, 8, 9, 71, 79], "chi00_wk": [84, 90, 92], "chi00_wk_analyt": 92, "chi00_wk_wo_spin": 84, "chi0_from_gg2_ph": [3, 73, 78, 79, 87, 94], "chi0_from_gg2_pp": [3, 73, 78, 79], "chi0_k": 79, "chi0_kw": [79, 94, 96], "chi0_m": [79, 87, 94], "chi0_nk": 79, "chi0_q0": 90, "chi0_q0_integr": 90, "chi0_q0_integral_kspac": 90, "chi0_q0_integral_kspace_matrix": 90, "chi0_q0_ref": 90, "chi0_q0_ref2": 90, "chi0_tau_from_g_tau_ph": 3, "chi0_tr_from_g_tr_ph": 3, "chi0_tr_from_grt_ph": [3, 78, 91], "chi0_vec": 90, "chi0_w0r_from_grt_ph": [3, 78, 90, 92], "chi0_wk": [88, 91], "chi0_wnk": [27, 28, 29, 79], "chi0_wnn": 79, "chi0_wr": 88, "chi0q_from_chi0r": [3, 78, 88], "chi0q_from_g_wk_ph": [3, 78], "chi0q_sum_nu": [3, 78], "chi0q_sum_nu_q": [3, 78], "chi0q_sum_nu_tail_corr_ph": [3, 78], "chi0r_from_chi0q": [3, 78], "chi0r_from_gr_ph": [3, 78, 88], "chi0r_from_gr_ph_nompi": [3, 78], "chi2_tau_t": 9, "chi_": [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 33, 71, 72, 79, 84, 86, 94, 96], "chi_0": [73, 84, 86, 88, 90, 91, 94], "chi_c": 84, "chi_const_k": 72, "chi_contract": [73, 79], "chi_d_wk": 91, "chi_dtr_t": 31, "chi_dwk_vt": 31, "chi_dyn_wk": 72, "chi_fk": [33, 79], "chi_fk_cvt": [32, 33, 46, 47], "chi_fk_t": [32, 33, 65, 71], "chi_fk_vt": 71, "chi_from_gg2": [78, 79, 87, 94], "chi_from_gg2_ph": [3, 73, 78, 79], "chi_from_gg2_pp": [3, 73, 78, 79], "chi_imfreq": 78, "chi_imp_w": [79, 96], "chi_imtim": 78, "chi_interp": 92, "chi_k": 79, "chi_k_cvt": [32, 33, 37, 46, 47, 49, 50, 79], "chi_k_t": 72, "chi_k_vt": 31, "chi_kw": [79, 94], "chi_kw_bs": 96, "chi_kw_dbs": 96, "chi_kw_t": [28, 29], "chi_kwnn_t": 27, "chi_m": [79, 87, 88, 94], "chi_m_stat": [79, 87], "chi_m_wk": 91, "chi_nn_cvt": 29, "chi_ph_magnet": 87, "chi_q0": 90, "chi_q0_ref": 90, "chi_r_t": 31, "chi_r_vt": 35, "chi_szsz": 92, "chi_szsz_contract": 92, "chi_szsz_q0": 90, "chi_szsz_wk": 90, "chi_tk_t": 39, "chi_tr": [22, 23, 25, 39], "chi_tr_cvt": [23, 25, 39, 48], "chi_tr_from_chi_wr": [3, 78], "chi_tr_t": [6, 10, 22, 31], "chi_tr_vt": 35, "chi_vec": 90, "chi_w": 88, "chi_w0r_from_chi_tr": [3, 78], "chi_w_t": 15, "chi_wk": [26, 33, 72, 84, 88, 90, 92], "chi_wk_cvt": [26, 32, 33, 49, 72], "chi_wk_from_chi_wr": [3, 78, 90, 91, 92], "chi_wk_t": [14, 16, 24, 30, 32, 33, 65, 71, 72], "chi_wk_vec": 92, "chi_wk_vt": [30, 31, 34, 71], "chi_wnk": [14, 15, 16, 17], "chi_wnk_cvt": [14, 15, 16, 17, 27, 28, 29], "chi_wnk_t": [12, 13], "chi_wnn": 79, "chi_wnn_cvt": [27, 28, 29], "chi_wnr": 12, "chi_wnr_cvt": 12, "chi_wnr_t": [17, 18, 19], "chi_wr": [22, 24, 26], "chi_wr_cvt": [22, 24], "chi_wr_from_chi_tr": [3, 78, 91], "chi_wr_from_chi_wk": [3, 78], "chi_wr_t": [11, 23, 25, 26], "chiq_from_chi0q_and_gamma_ph": [3, 78, 88], "chiq_sum_nu": 88, "chiq_sum_nu_from_chi0q_and_gamma_and_l_wn_ph": 3, "chiq_sum_nu_from_chi0q_and_gamma_ph": [3, 78], "chiq_sum_nu_q": 88, "choic": [83, 86], "choosen": 86, "cite": [79, 96], "class": [79, 89, 90, 92, 93, 94], "classifi": 81, "clone": 76, "close": [86, 89], "cluster": [0, 79], "cluster_sit": 79, "cmake": 77, "cmakecach": 77, "cmakelist": 77, "cmap": 92, "co": 90, "code": [76, 84], "coeffici": 85, "collect": [73, 83, 86, 87], "colorbar": [87, 92], "com": [76, 77], "combin": [81, 86, 89, 91, 96], "come": [87, 94], "comfort": 89, "command": [76, 77], "common": [93, 94, 96], "commonli": 83, "commut": [80, 90], "compar": [84, 87, 90, 94], "comparison": 96, "compil": [0, 77], "complet": 93, "complex": [0, 30, 47, 71, 79, 81, 89, 91, 92], "compon": [0, 35, 79, 82, 83, 86, 87, 89, 92, 96], "compress": 86, "comput": [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 30, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 71, 75, 79, 82, 87, 88, 92, 93, 94, 96], "computation": 92, "computationali": 81, "conclud": 94, "conda": [0, 76], "condens": 81, "condit": [0, 73], "conf": 0, "configur": 76, "conjuat": 79, "conjug": [79, 80, 81], "connect": [83, 86, 89], "conserv": [83, 86], "consid": [79, 80, 81, 83, 86, 89, 90], "consist": [0, 79, 81, 86, 96], "consisten": 93, "constant": [31, 72, 79, 81, 84, 89], "constrain": 81, "constraint": [83, 86, 91], "construct": [0, 30, 46, 47, 51, 52, 53, 54, 59, 60, 61, 62, 63, 64, 79, 84, 87, 88, 89, 92, 93, 96], "construct_gamma__rpa": 30, "construct_gamma_singlet_rpa": [30, 73, 79, 91], "construct_gamma_triplet_rpa": [73, 79], "construct_phi_wk": [3, 78, 91], "constructor": 0, "contact": 74, "contain": [0, 76, 79], "continu": [65, 90], "contiuat": 0, "contour": 92, "contract": [79, 84, 86, 92], "contrast": 84, "contribut": 1, "contributor": [0, 1], "converg": [0, 31, 72, 79, 93, 94, 96], "convert": 79, "convert_keys_from_string_to_python": 79, "converters_worm": 96, "convinc": 89, "convolut": [0, 13, 35, 81], "cooper": 81, "coordin": [79, 92], "copi": [79, 88, 90, 92, 93, 94], "core": [89, 95], "correct": [0, 14, 15, 16, 84, 89, 91, 95, 96], "correl": [81, 83, 96], "correspond": [79, 81, 83, 84, 89, 92, 94], "cosh": [65, 79, 90], "coshm": 90, "could": [83, 84], "count": 89, "coupl": 79, "cpp2py": 0, "creat": [76, 79, 89, 91, 92], "create_square_lattic": [73, 79, 89, 91], "create_zero": 79, "creation": [80, 89], "criterion": 79, "critic": 81, "cross": [73, 96], "crude": 89, "cthyb": [87, 88, 93, 94, 96], "cumsum": 90, "current": 81, "curv": 94, "cut": 96, "cyclic": [79, 80, 85], "d": [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 34, 35, 39, 51, 52, 53, 54, 55, 56, 57, 58, 65, 66, 67, 68, 69, 71, 79, 80, 81, 82, 83, 84, 85, 86, 87, 90, 91, 92, 93, 94], "d1": 79, "d_": 89, "da": [7, 8, 9, 79], "dagger": [46, 47, 79, 80, 83, 84, 85, 89, 90], "dagger_": [46, 47, 65, 79, 83, 85, 89, 90, 92], "dat": [79, 96], "data": [79, 87, 88, 89, 90, 92, 96], "data_b_": 94, "data_b_0": 94, "data_bse_nwf": 94, "data_bse_nwf_": 96, "data_chi": 96, "data_g2": [94, 96], "data_sc": [93, 96], "data_tri": 96, "db": 94, "dbse": [79, 96], "dbuild_document": 76, "dbuild_test": 76, "dc": [20, 21, 37, 49, 79, 86], "dcmake_build_typ": 76, "dcmake_install_prefix": 76, "dcomplex": 79, "de": 90, "debian": 0, "debug": 76, "decoupl": 84, "dedic": 92, "dedict": 92, "deepcopi": 93, "def": [87, 90, 92, 93, 96], "default": [79, 91], "defin": [0, 79, 81, 83, 84, 85, 86, 89, 92], "definit": [81, 85], "definiton": 81, "defmatrix": 90, "degener": 92, "degre": 81, "del": 94, "delta": [34, 35, 46, 47, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 65, 66, 67, 68, 69, 79, 81, 84, 86, 87, 89, 90, 91], "delta_": [7, 8, 20, 21, 46, 47, 51, 52, 53, 54, 65, 79, 80, 81, 83, 84, 85, 86, 94], "delta_wk": [34, 35], "deltas_freq_even_mom_even": 91, "deltas_freq_odd_mom_odd": 91, "denot": [81, 83, 85, 86, 92], "densiti": [0, 30, 37, 49, 50, 70, 79, 81, 82, 90, 93], "depend": [0, 30, 32, 33, 51, 52, 53, 54, 55, 56, 57, 58, 66, 67, 68, 69, 73, 79, 80, 81, 82, 83, 85, 86, 87, 88, 92, 94], "depr": 0, "deriv": [73, 80, 82, 83, 84, 89, 94], "describ": [79, 83, 89], "descript": 0, "desir": 79, "destroi": 89, "detail": [0, 73, 79, 83, 89, 92, 94, 96], "determin": [81, 84, 89, 94, 96], "determinig": [51, 52, 53, 54, 79], "develop": 1, "deviat": 87, "df": 90, "df_ref": 90, "dfdm": 90, "dg_l": 93, "di": [65, 79], "diag": [90, 92, 93, 96], "diagon": [46, 47, 65, 79, 81, 87, 96], "diagram": [65, 79, 81, 89, 92], "diamond": 92, "dict": [79, 93, 94], "dict_kei": 79, "dictat": 81, "dictionari": [79, 92], "dictionnari": 79, "diff": 88, "diff_vec": 87, "differ": [75, 79, 81, 82, 84, 85, 86, 87, 94, 96], "dimens": [79, 89], "dimension": [79, 92], "dirac": 36, "direct": [86, 94], "directli": [77, 86, 94], "directori": [76, 77], "disabl": 76, "disconnect": [83, 96], "discontinu": 80, "discret": [46, 47, 59, 60, 61, 62, 63, 64, 65, 79], "disp": 90, "dispers": [46, 47, 59, 60, 61, 62, 63, 64, 65, 79, 81, 88, 89, 90, 91, 93, 96], "displai": 89, "diss": 83, "dist": 79, "distanc": 79, "distribut": [5, 36, 76, 92], "diverg": [81, 89], "divis": 0, "dk": 90, "dlr": 1, "dlr_imfreq": [60, 79], "dm": [93, 94], "dmft": [0, 73, 79, 96], "dmft_iter": 93, "dmft_self_consistent_step": 93, "dmft_susceptibility_dbs": 96, "dn": 87, "do": [0, 81, 84, 87, 89, 90, 91, 92, 93, 94], "doc": [79, 96], "docker": 0, "document": [1, 4, 31, 32, 33, 39, 46, 47, 49, 60, 62, 64, 65, 71, 75, 76, 84, 89, 92], "doe": 79, "domain": 88, "domain_pt": 0, "domin": 0, "don": [84, 91], "done": [1, 79, 81, 86, 87, 88, 94], "doption1": 76, "doption2": 76, "dot": 79, "doubl": [5, 30, 36, 46, 47, 59, 60, 61, 62, 63, 64, 65, 71, 79], "doublecount": 81, "doubli": 89, "down": [81, 83], "downarrow": [79, 84, 87, 89, 90, 92, 93, 94], "download": [76, 93, 95], "draft": 81, "drastic": 96, "dress": 83, "dtype": [87, 91, 92], "dual": [29, 73], "due": [81, 83, 96], "dumitrescu": [0, 1], "dure": 77, "dylan": 0, "dyn": [49, 72, 79], "dynam": [4, 31, 32, 33, 35, 46, 47, 48, 49, 72, 79, 94, 96], "dynamic_and_constant_to_tr": [3, 78], "dynamical_screened_interaction_w": [3, 73, 78, 79], "dynamical_screened_interaction_w_from_generalized_suscept": [3, 73, 78, 79], "dyson": [91, 92], "dzyaloshinski": 81, "e": [1, 5, 23, 34, 35, 36, 46, 47, 65, 79, 80, 81, 83, 85, 86, 87, 88, 89, 90, 92, 94], "e_k": [46, 47, 59, 60, 61, 62, 63, 64, 65, 79, 88, 89, 90, 91, 92, 93, 94, 96], "e_k_cvt": [46, 47, 59, 60, 61, 62, 63, 64, 65, 79], "e_k_interp": 92, "e_k_t": [4, 37, 47, 49, 50, 70, 79], "e_kin": 90, "e_kin_do": 90, "e_kin_up": 90, "e_loc": 96, "e_tot": 90, "e_vec": 90, "each": [79, 81, 83, 86, 87, 89, 91], "easi": 79, "easier": [77, 93], "easybuild": 0, "effeci": 81, "effect": 79, "effici": [0, 75, 79, 81, 84, 92], "efgh": [32, 33, 79], "eig": 79, "eigen_mod": [79, 89], "eigenvalu": [79, 81, 89, 91], "eigenvector": [79, 81, 89], "einstein": [5, 83], "einsum": [90, 92], "either": [0, 80, 81, 89], "ek": 90, "electron": [81, 83, 89], "element": [79, 84, 87], "eliashberg": [1, 30, 34, 35, 73, 84], "eliashberg_product": [3, 78, 79], "eliashberg_product_fft": [3, 78, 79], "els": [81, 84, 93, 94], "emerg": 81, "emploi": [83, 85], "enabl": [0, 94], "encod": 0, "end": [81, 84, 86, 91, 94], "energi": [0, 37, 46, 47, 48, 49, 50, 61, 62, 63, 64, 79, 83, 88, 89, 93], "enforc": [0, 79, 91], "enforce_symmetri": 91, "ensur": [76, 79], "enter": 89, "entri": [79, 84], "enumer": [87, 92], "environ": 76, "ep": [79, 90], "eps_k": 92, "epsilon": [5, 36, 59, 60, 61, 62, 63, 64, 65, 79, 81, 90], "epsilon_": [46, 47, 59, 60, 61, 62, 63, 64, 65, 79, 93], "eq": [81, 86, 90], "equal": [80, 87], "equat": [27, 28, 29, 71, 73, 75, 84, 92], "equilibrium": 83, "equip": 94, "equiv": [51, 52, 53, 54, 55, 56, 57, 58, 65, 66, 67, 68, 69, 79, 80, 81, 82, 83, 85, 86, 87], "equival": [49, 86], "erik": 0, "err": 90, "error": [0, 79, 94], "espresso": [95, 96], "establish": [83, 89], "et": [79, 81, 84, 94], "eta": 90, "etc": [75, 79, 93], "ev": [89, 96], "eval": 79, "evalu": [5, 36, 65, 79], "even": 81, "everi": [79, 84, 86, 89], "everyth": 91, "exact": 79, "exampl": [73, 79, 80, 81, 88, 89, 91, 92, 96], "except": 86, "exchang": 81, "excit": [83, 92], "exclud": 79, "exclus": 84, "execut": 77, "exp": [5, 36, 83, 86, 87, 90], "expand": [81, 84, 85], "expans": [86, 96], "expect": [84, 89], "experienc": 77, "explicit": [0, 23, 79, 84], "explicitli": [0, 65, 79, 81, 83, 84, 86], "exploit": 83, "expm": 90, "expos": 79, "express": [65, 79, 81, 86, 87, 92], "extend": [0, 85], "extens": 1, "extent": 92, "extern": [73, 83, 94], "extract": 84, "extrapol": [94, 96], "ey": [90, 92, 93], "f": [12, 17, 22, 24, 25, 26, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 65, 73, 79, 81, 90, 92, 93, 94, 96], "f_": [79, 82, 96], "f_wnn": [79, 96], "fact": [81, 84], "factor": [81, 85, 89, 90], "fals": [79, 84, 89, 93, 94], "far": 96, "fast": [38, 39, 40, 41, 42, 43, 44, 45, 89], "fazeka": 90, "fdm": 90, "featur": [73, 87], "feedstock": 76, "fegh": [32, 33, 79], "fequenc": 89, "fermi": [3, 96], "fermi_distribut": 90, "fermi_distribution_deriv": 90, "fermion": [12, 13, 14, 15, 16, 17, 18, 19, 79, 80, 81, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96], "few": 96, "fft": [35, 79], "field": [73, 79, 93, 96], "figsiz": [87, 92], "figur": [87, 92], "file": [0, 76, 77, 79, 96], "filenam": [79, 89, 96], "filename_chi": 96, "filename_g2": 96, "filename_out": 96, "filename_sc": 96, "filename_tri": 96, "fill": [79, 89, 92], "final": [35, 80, 86], "find": [0, 77, 79, 89], "find_packag": 0, "find_uc": 90, "finder": 0, "finit": [79, 87, 94], "first": [35, 80, 84, 86, 87, 88, 89, 91, 92, 94], "fit": [0, 49, 72, 79, 94], "fix": [0, 79, 81, 91, 94], "flatten": 92, "flip": [79, 81, 84], "float": [79, 87, 93], "floor": 0, "fluctuat": 90, "flush": 96, "fock": [37, 49, 73], "fock_sigma": 3, "fold": 79, "folder": 95, "follow": [76, 77, 79, 81, 84, 86, 89, 91], "follw": 86, "forc": 82, "forg": 76, "form": [55, 56, 57, 58, 66, 67, 68, 69, 79, 81, 83, 86, 87, 89, 92, 93], "formal": [81, 92], "format": [93, 94], "formul": 96, "formula": [79, 86, 92], "forward": 79, "found": [79, 89], "four": [81, 82, 83, 84, 86, 92], "fourier": [12, 17, 22, 24, 25, 26, 31, 35, 38, 39, 40, 41, 42, 43, 44, 45, 49, 65, 79, 83, 85, 86, 89, 90, 91, 92, 93, 96], "fourier_fk_to_fr": 3, "fourier_fr_to_fk": 3, "fourier_tk_to_tr": 3, "fourier_tr_to_tk": 3, "fourier_tr_to_wr": [3, 78], "fourier_wk_to_wr": [3, 78, 88, 90, 91, 92], "fourier_wr_to_tr": [3, 78, 90, 91, 92], "fourier_wr_to_wk": [3, 78], "frac": [5, 13, 14, 15, 16, 30, 34, 35, 36, 37, 46, 47, 49, 50, 61, 63, 65, 79, 80, 81, 82, 83, 84, 85, 86, 89, 90, 91, 92, 93, 94, 96], "framework": [0, 94], "free": 83, "freedom": 81, "freq": 88, "freq_conv": 87, "freqienc": [13, 18, 19, 88, 94], "frequenc": [0, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 30, 31, 35, 40, 41, 42, 43, 44, 45, 46, 47, 49, 59, 60, 61, 62, 63, 64, 65, 72, 73, 79, 81, 82, 85, 88, 89, 92, 94, 96], "frequencu": 87, "frequent": 73, "from": [0, 1, 22, 24, 25, 26, 38, 39, 40, 41, 42, 43, 44, 45, 70, 71, 73, 79, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 96], "fulfil": 86, "full": [32, 33, 73, 79, 84, 92], "fulli": [0, 46, 47, 73, 79, 81, 83], "function": [0, 2, 4, 5, 6, 7, 8, 9, 10, 11, 13, 18, 19, 20, 21, 27, 28, 29, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 81, 84, 88, 89, 90, 93, 94, 96], "functool": 91, "fundamental_oper": [90, 92], "fundamental_operators_from_gf_struct": 90, "further": [89, 91, 94], "g": [0, 6, 7, 8, 9, 20, 21, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 65, 79, 80, 81, 83, 85, 86, 87, 88, 89, 92, 93, 94, 96], "g0_iw": [88, 93, 94], "g0_w": [93, 94], "g0_wk": [84, 89, 90, 91, 92], "g0_wk_wo_spin": 84, "g0w0": 0, "g0w_dynamic_sigma": 3, "g0w_sigma": [3, 73, 78, 79], "g2": [7, 8, 20, 21, 79, 94], "g2_from_w2dyn_g2_worm_compon": 96, "g2_iw_cvt": [51, 55, 66], "g2_iw_ph": 94, "g2_iw_t": [7, 8, 20, 21, 51, 52, 53, 54, 55, 56, 57, 58, 66, 67, 68, 69, 79], "g2_iw_vt": [7, 8, 20, 21, 52, 53, 54, 56, 57, 58, 67, 68, 69, 79], "g2_loc_fixed_fermionic_window_python": [94, 96], "g2_nn_t": 79, "g2_nn_vt": 79, "g2_wnn": [79, 96], "g2_worm_compon": 96, "g_": [4, 7, 8, 9, 10, 11, 13, 18, 19, 20, 21, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 55, 56, 57, 58, 61, 62, 63, 64, 70, 79, 80, 81, 83, 84, 85], "g_0": [92, 93], "g_dn": 88, "g_dw_cvt": [64, 79], "g_dw_t": 79, "g_dwk_cvt": [64, 79], "g_dwk_t": [60, 64, 79], "g_dyn_fk": 4, "g_dyn_wk": 4, "g_f_cvt": [61, 62, 79], "g_f_t": [46, 47, 61, 79], "g_fk": 40, "g_fk_cvt": [40, 62], "g_fk_t": [4, 41, 46, 47, 59, 62, 79], "g_fr": 41, "g_fr_cvt": 41, "g_fr_t": 40, "g_iw": [79, 87, 88], "g_iw_block": 87, "g_iw_vt": [7, 8, 20, 21, 79], "g_l": 93, "g_l_tol": [93, 94], "g_nr": [18, 19, 88], "g_stat_k": 4, "g_tau": [93, 96], "g_tau_cvt": 9, "g_tau_raw": 93, "g_tk": 38, "g_tk_cvt": 38, "g_tk_t": 39, "g_tr": [10, 11, 13, 18, 19, 39, 42, 48], "g_tr_cvt": [6, 10, 11, 39, 42, 48], "g_tr_gtr": 6, "g_tr_le": 6, "g_tr_t": [38, 44, 48], "g_w": [79, 93, 94, 96], "g_w_cvt": [63, 64], "g_w_t": 63, "g_wk": [4, 13, 34, 35, 37, 43, 49, 50, 70, 79, 88, 94, 96], "g_wk_cvt": [13, 37, 43, 49, 50, 64, 70], "g_wk_t": [4, 34, 35, 45, 49, 60, 64], "g_wk_vt": [34, 35], "g_wr": [44, 45, 88], "g_wr_cvt": [18, 19, 44, 45], "g_wr_t": [42, 43], "gain": 89, "gamma": [27, 28, 29, 31, 34, 35, 51, 52, 53, 54, 55, 56, 57, 58, 66, 67, 68, 69, 79, 81, 83, 84, 86, 87, 89, 91, 92, 94, 96], "gamma_": [79, 81, 84, 87], "gamma_m": [79, 88, 94], "gamma_m_an": 87, "gamma_m_num": 87, "gamma_ph_magnet": 87, "gamma_ph_wnn": [27, 28, 29], "gamma_pp": [34, 89], "gamma_pp_const_k": [31, 79], "gamma_pp_const_r": [31, 35, 79], "gamma_pp_dyn_tr": [31, 35, 79], "gamma_pp_dyn_wk": 31, "gamma_pp_wk": 79, "gamma_singlet": [79, 91], "gamma_triplet": 79, "gamma_wnn": [79, 96], "gap": [0, 34, 35, 73, 79, 89, 91], "gb": [90, 91, 92], "gener": [1, 4, 6, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 33, 65, 72, 73, 81, 84, 85, 86, 87, 88, 90, 91, 94], "general_susceptibility_from_charge_and_spin": 84, "gereal": 79, "get": [76, 79, 80, 81, 84, 86, 87, 89], "get_chi0_nk_at_specific_w": [73, 79], "get_chi0_wnk": [73, 79], "get_cmap": 92, "get_density_of_st": 90, "get_kmesh": [79, 89, 90, 91, 92, 93, 96], "get_rmesh": 79, "get_rpa_tensor": [71, 79, 90], "get_total_energy_mf_ref": 90, "get_zero": 0, "gf": [0, 78, 79, 87, 88, 89, 90, 91, 92, 93, 96], "gf_struct": [0, 79, 90, 93, 94], "gf_worm_compon": 96, "gfbloc": 79, "gg": [7, 8, 9, 20, 21, 79], "gingra": [0, 1], "gist": 77, "git": 76, "github": [76, 77], "give": [34, 35, 65, 77, 79, 83, 84, 86, 89, 92, 94, 96], "given": [30, 32, 33, 34, 35, 49, 51, 52, 53, 54, 55, 56, 57, 58, 66, 67, 68, 69, 79, 80, 81, 83, 84, 86, 89, 92, 93, 94, 96], "glob": 93, "global": 86, "gnu": 1, "go": [76, 83], "goe": 93, "gor": 81, "gpl": 1, "greater": 6, "greek": 84, "green": [0, 4, 6, 7, 8, 9, 10, 11, 13, 18, 19, 20, 21, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 59, 60, 61, 62, 63, 64, 65, 70, 72, 73, 81, 83, 84, 86, 88, 89, 91, 92, 93, 94, 96], "grid": [90, 92], "group": 86, "gt": [90, 91, 92], "guarante": [0, 76], "guess": 93, "guid": [74, 88, 94], "guidelin": 77, "gw": [1, 46, 47, 48, 49, 73], "gw_dynamic_sigma": 3, "gw_sigma": [3, 73, 78, 79], "gw_solver": 79, "gwsolver": [73, 79], "h": [1, 79, 80, 87, 89, 90, 92, 93, 96], "h5": [79, 93, 94, 96], "h_": [84, 90, 93], "h_int": [0, 79, 90, 92, 93], "h_loc": 90, "ha": [1, 79, 80, 81, 82, 84, 86, 87, 89, 90, 91, 92, 94], "hafermann": 94, "half": [79, 89, 92], "hamiltonian": [79, 83, 84, 87, 88, 89, 96], "hamitlonian": 83, "hampel": 0, "hand": [79, 86, 89, 96], "hartre": [50, 73], "hartree_fock_solv": 79, "hartree_sigma": 3, "hartree_solv": 79, "hartreefockrespons": [73, 79], "hartreefocksolv": [73, 79], "hartreerespons": [73, 79], "hartreesolv": [73, 79], "hasattr": 93, "hat": [79, 81, 84, 90], "have": [0, 76, 77, 79, 80, 81, 84, 87, 89, 91, 92, 96], "hdf": 79, "hdfarchiv": [79, 93, 94, 96], "heisenberg": 80, "helper": [0, 5, 36, 79, 87, 88, 92, 93, 94], "henc": [79, 82, 85], "here": [76, 79, 81, 83, 84, 87, 88, 89, 91, 92, 93, 94, 96], "hermitian": 82, "hf": 79, "hf_respons": 79, "hf_solver": 79, "hgcd": [32, 33, 79], "high": [49, 72, 79, 91, 92, 94], "higher": [16, 75, 76, 91], "highlight": 84, "histor": 84, "hold": [81, 84, 86], "hole": [6, 7, 9, 10, 11, 13, 18, 19, 20, 21, 27, 28, 29, 30, 52, 53, 56, 57, 65, 67, 68, 71, 73, 75, 79, 84, 87, 92, 94], "homepag": 75, "homogen": [89, 94], "hop": [79, 89, 90, 92, 93, 94], "hopp_dict": 79, "horizont": [83, 86], "hotta": 81, "hound": 79, "hove": 92, "how": [74, 75, 81, 87, 89], "howev": [82, 87, 94, 96], "hpp": [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 78], "hr": 0, "http": [76, 77, 87, 95], "hubbard": [73, 81, 88, 91, 92, 93, 94, 96], "hubbard_atom": [78, 87], "hugo": [0, 1, 90], "hund": [81, 96], "hybrid": [87, 96], "i": [0, 1, 4, 6, 23, 30, 31, 32, 33, 34, 35, 37, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 94, 96], "id": [65, 79], "idea": 81, "ident": [3, 52, 53, 54, 78, 79], "identity_ph": [3, 73, 79], "identity_ph_bar": [3, 73, 79], "identity_pp": [3, 73, 79], "idx": [0, 87, 90, 92, 93], "idxs_vec": 90, "iint_0": 86, "ij": [46, 47, 65, 79], "im": [46, 47, 87], "imag": [0, 76, 87], "imaginari": [0, 10, 11, 13, 18, 19, 22, 23, 25, 26, 31, 35, 42, 43, 44, 45, 49, 60, 63, 64, 65, 79, 80, 83, 85, 86, 88, 92], "imfreq": [60, 65], "implement": [0, 73, 75, 79, 81, 92, 96], "impli": 1, "implicitli": [0, 79], "implicitly_restarted_arnoldi_method": [73, 79], "import": [0, 79, 84, 87, 88, 89, 90, 91, 92, 93, 94, 96], "impos": 86, "improp": 1, "improv": [0, 1, 87, 94, 96], "impur": [73, 87, 88, 93, 94, 96], "impurity_irreducible_vertex_gamma": 96, "impurity_reducible_vertex_f": [73, 79, 96], "imshow": [87, 92], "imtime_bubble_chi0_wk": [73, 79, 84, 90, 91, 92], "includ": [0, 1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 76, 77, 81, 93], "incom": 83, "incorpor": [80, 81], "incorrect": 1, "incorrectli": 79, "increas": [89, 94], "indent": 0, "independ": [61, 63, 64, 73, 79, 82, 89, 92], "index": [0, 79, 81, 84, 86, 92], "indic": [0, 51, 52, 53, 54, 55, 56, 57, 58, 66, 67, 68, 69, 79, 81, 83, 84, 86, 89, 92, 94], "indistinguish": 81, "individu": [0, 91], "infin": 16, "infinit": [79, 87], "inform": [76, 77, 84, 89, 94], "infti": [16, 31, 72, 79, 83, 85, 94, 96], "ingredi": [89, 91], "inhibt": 89, "init": [0, 79, 93, 94], "initi": [79, 93], "initial_delta": 79, "input": [79, 93], "insert": [81, 83, 86], "insid": [0, 79, 81], "instabl": [90, 92], "instal": [0, 77], "instanc": 79, "instead": [0, 81, 94], "instruct": [0, 76], "int": [13, 18, 19, 22, 25, 42, 44, 79, 84, 93, 94], "int_": 90, "int_0": [11, 23, 80, 82, 83, 85], "integ": [79, 83], "integr": [23, 79, 82, 86], "integrand": 90, "inter": 79, "interact": [32, 33, 37, 46, 47, 48, 49, 50, 59, 60, 61, 62, 63, 64, 65, 73, 81, 83, 86, 89, 90, 91, 92, 93, 96], "interchang": 86, "interest": 81, "interfac": [0, 79], "intern": 79, "interpol": [92, 96], "interpolate_chi": 92, "interpret": 89, "intra": 79, "introduc": [0, 84, 85, 89], "inv": 90, "invari": [85, 89], "invers": [3, 38, 40, 43, 46, 47, 56, 57, 58, 65, 75, 78, 79, 81, 88, 89, 93], "inverse_ph": [3, 73, 79, 87, 94], "inverse_ph_bar": [3, 73, 79], "inverse_pp": [3, 73, 79], "invert": [55, 56, 57, 58, 79, 87], "involv": 82, "iomega_n": [79, 88], "ipython": 89, "iram": 79, "irreduc": [0, 30, 73, 79, 83, 86, 96], "is_master_nod": [93, 94], "issu": 0, "item": 0, "iter": [79, 93, 96], "itertool": [90, 92, 96], "ith": 83, "its": [1, 76, 79, 82, 89, 94], "j": [65, 79, 81, 84, 89, 90, 92, 96], "jammi": 76, "jb": [65, 79], "jp": 79, "jujo": 81, "just": 96, "k": [0, 4, 13, 14, 15, 16, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 43, 45, 46, 47, 49, 50, 59, 60, 61, 62, 63, 64, 65, 70, 71, 72, 79, 81, 84, 88, 89, 90, 91, 93, 96], "k_cvt": 79, "k_mesh": 79, "k_plot": 92, "k_space_path": [73, 79, 92], "k_tick": 92, "k_vec": [90, 92], "k_vol": 90, "k_x": 92, "k_y": 92, "kaeser": 0, "kanamori": [79, 81, 84, 96], "kanamori_quartic_tensor": [73, 79], "keep": [76, 81, 84, 88, 93, 94], "kei": [79, 92], "kelvin": 89, "keyword": [79, 89], "kidx": 92, "kind": [1, 96], "kinet": [79, 89], "kjpaw_psl": 95, "km": 73, "kmesh": [46, 47, 79, 92, 93, 96], "know": 89, "knowledg": 89, "known": [33, 79, 87, 92], "kotliar": 81, "kov": 81, "kpoint": [46, 47, 79], "kroneck": 86, "kubo": 73, "kvec": 79, "kwarg": 79, "kx": 92, "ky": 92, "kz": 92, "k\u00e4ser": [0, 1], "l": [29, 46, 47, 79, 81, 89, 90, 96], "l_": [79, 96], "l_from_g3": 96, "l_wn": [29, 79, 96], "la": 79, "label": [83, 86, 87, 90, 92], "ladder": [30, 79, 81, 89, 91], "lambda": [79, 81, 89, 91, 92], "lambdas_freq_even_mom_even": 91, "lambdas_freq_odd_mom_odd": 91, "langl": [79, 80, 82, 83, 84, 85, 89, 90, 92], "larg": 81, "largest": [79, 81, 89], "last": [84, 89], "latest": 76, "latin": 84, "lattic": [0, 27, 28, 29, 46, 47, 59, 60, 61, 62, 63, 64, 65, 70, 73, 84, 90, 91, 93, 96], "lattice_dyson_g0_fk": [3, 73, 78, 79], "lattice_dyson_g0_wk": [3, 73, 78, 79, 89, 90, 91, 92], "lattice_dyson_g_f": [3, 73, 79], "lattice_dyson_g_fk": [3, 73, 78, 79], "lattice_dyson_g_w": [3, 73, 78, 79, 93], "lattice_dyson_g_wk": [3, 73, 78, 79, 88, 94, 96], "lattice_to_real_coordin": 79, "lattice_util": [79, 84, 90, 91, 92], "lb": [46, 47], "lead": [79, 83, 91], "learn": 75, "leav": 81, "left": [12, 17, 22, 24, 25, 26, 27, 28, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 59, 60, 61, 62, 63, 64, 65, 79, 81, 83, 86, 89, 91, 94], "leg": [83, 86], "legend": [90, 92], "legendr": 93, "legendretomatsubara": 93, "len": 79, "length_cycl": [93, 94], "leq": 81, "less": 90, "lesser": 6, "letter": [81, 84], "level": [92, 96], "lexicograph": 84, "librari": [0, 1, 76], "lightweight": 94, "like": [81, 94], "lim_": [90, 94], "limit": [0, 73, 79, 82, 84, 94, 96], "linalg": [51, 52, 53, 54, 55, 56, 57, 58, 66, 67, 68, 69, 78, 79, 87, 90, 94], "linder": 81, "lindhard": [65, 73, 79, 92], "lindhard_chi00": [3, 73, 78, 79, 92], "lindhardt": 92, "lindhardt_chi00": 78, "line": 90, "line2d": 90, "linear": [0, 34, 35, 73, 87, 95], "linearli": [82, 94], "linearoper": 79, "link": 0, "linspac": [90, 92], "linux": 76, "list": [0, 79, 81, 90, 92], "ll": 86, "load": [79, 96], "load_h5": 96, "loc": 90, "local": [27, 28, 29, 30, 61, 63, 75, 79, 81, 88, 89, 92, 93, 96], "log": [], "logo": 0, "longer": 0, "look": [76, 91, 92, 93, 94], "loon": 0, "loop": 0, "lose_spin_degree_of_freedom": 84, "low": 94, "lower": 92, "lt": [76, 90], "lw": 90, "m": [1, 30, 79, 81, 90, 91, 92, 93, 94], "m0": 79, "m2": [79, 87], "m_old": 93, "m_vec": 90, "made": 79, "magent": 91, "maget": 94, "magma": 92, "magnet": [30, 79, 81, 87, 94, 96], "mainli": 87, "major": [0, 76], "make": [0, 76, 77, 79, 81, 86, 87, 88, 91, 93, 94], "make_gf_from_fouri": 96, "malt": 0, "manag": 0, "mangl": 79, "mani": [81, 83, 84], "manifest": [81, 83], "manner": 89, "manual": 89, "manuel": 0, "map": [51, 52, 53, 54, 55, 56, 57, 58, 66, 67, 68, 69, 73, 79, 86, 87, 89], "martin": 73, "mat": [79, 90], "mat2vec": 79, "matbf": 15, "math": 79, "mathbb": [71, 79, 83, 84], "mathbf": [4, 6, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 59, 60, 61, 62, 63, 64, 65, 70, 71, 72, 79, 81, 90, 91, 93, 94, 96], "mathcal": [12, 17, 22, 24, 25, 26, 35, 38, 39, 40, 41, 42, 43, 44, 45, 49, 65, 79, 80, 81, 83, 85, 86, 92], "mathrm": [30, 34, 35, 79, 81, 84, 89, 91], "matplotlib": [90, 92], "matric": [46, 47, 65, 79, 84, 92], "matrix": [0, 37, 46, 47, 49, 50, 55, 56, 57, 58, 65, 66, 67, 68, 69, 70, 73, 79, 82, 86, 87, 89, 90], "matrix_valu": 79, "matrixlib": 90, "matsuabara": [12, 13, 14, 15, 16, 17, 18, 19], "matsubara": [0, 13, 14, 15, 16, 18, 19, 22, 23, 24, 25, 26, 31, 42, 44, 59, 60, 63, 64, 65, 72, 73, 79, 81, 88, 89, 91, 96], "matter": 81, "matvec": 79, "max": [14, 15, 87, 88, 90, 92, 93], "max_it": 79, "maxim": 79, "maximum": [79, 89], "mean": [79, 84, 89, 94, 96], "measur": 94, "measure_g2_block": 94, "measure_g2_iw_ph": 94, "measure_g2_n_boson": 94, "measure_g2_n_fermion": 94, "measure_g_l": [93, 94], "measure_g_tau": 94, "member": 89, "memori": [0, 84, 90, 91, 92], "merg": 0, "mesh": [0, 7, 8, 46, 47, 59, 60, 65, 79, 87, 88, 89, 90, 91, 92, 93], "meshbrzon": [79, 88, 92], "meshcyclat": 79, "meshgrid": 92, "meshimfreq": [79, 89, 90, 91, 92, 93], "meshimtim": 79, "meshproduct": [79, 89], "metal": 96, "method": [0, 79, 81, 84, 89, 94], "mf": 90, "min": [14, 15, 92], "mind": 76, "minor": [0, 76], "minu": [81, 84, 91], "miss": 74, "mix": 79, "mkdir": 76, "mode": 76, "model": [73, 91, 93, 94, 96], "modern": [0, 81], "modul": [0, 89, 93, 94], "momenta": 81, "momentum": [0, 12, 14, 15, 16, 17, 24, 26, 30, 32, 33, 49, 61, 63, 64, 79, 81, 89, 90, 92, 94], "monomi": 84, "mont": [0, 94, 96], "more": [0, 76, 79, 81, 84, 89, 92, 94], "most": 0, "move": 76, "move_doubl": [93, 94], "mp": [81, 90], "mpi": [0, 19, 75, 93, 94], "mu": [46, 47, 59, 60, 61, 62, 63, 64, 65, 79, 88, 89, 90, 91, 92, 93, 94, 96], "mu0": 79, "mu_bracket": 79, "mu_max": 79, "mu_min": 79, "much": 94, "multi": [0, 91], "multiorbit": 92, "multipl": [79, 86, 94], "must": [1, 76, 79, 81, 84, 89, 91], "n": [0, 1, 79, 83, 84, 85, 89, 90, 92, 93, 95], "n_": [30, 79, 81, 87, 89, 90, 93, 94, 96], "n_b": [5, 46, 47], "n_cycl": [93, 94], "n_fix": 79, "n_iter": [93, 94], "n_iw": [93, 94], "n_k": [13, 15, 37, 46, 47, 49, 50, 61, 63, 65, 79, 88, 89, 90, 92, 93, 94, 96], "n_l": [93, 94], "n_max": [89, 90, 91, 92], "n_orbit": 79, "n_r": 79, "n_site": 79, "n_target": 79, "n_tau": [93, 94], "n_tol": 79, "n_tot": 79, "n_warmup_cycl": [93, 94], "name": [79, 92], "name_list": 87, "nan": 93, "nb": [14, 15], "nda": 79, "ndarrai": 79, "ndim": 79, "ne": [90, 94], "nearest": [79, 89, 90, 92, 93, 94], "need": [75, 79, 81, 87, 89, 91, 92, 96], "neglect": 90, "neigbhour": 92, "neighbor": [79, 89], "neighbour": [90, 92, 93, 94], "neq": [79, 81, 84], "nessecari": 92, "nest": 92, "new": [0, 76, 81, 93], "newton": 79, "next": [79, 91, 93], "nice": 92, "nil": 0, "nitermax": 79, "nk": [89, 90, 91, 92], "nm": 82, "nn": [13, 18, 19, 88], "node": 92, "nois": 94, "noisi": 0, "nomura": 81, "non": [0, 59, 60, 65, 73, 80, 81, 83, 86, 89, 90, 91, 92, 95, 96], "none": [79, 87, 92, 94, 96], "nonloc": 81, "norb": [79, 89, 90, 91, 92], "norm": 79, "normal": [73, 84], "notat": [84, 86], "note": [1, 79, 80, 81, 84, 86, 87, 94], "notebook": [0, 89, 91], "notion": [85, 86], "nourafkan": 81, "now": [0, 31, 79, 80, 81, 83, 85, 87, 91, 92, 94], "np": [0, 79, 87, 88, 90, 91, 92, 93, 96], "nr_factor": 79, "nsite": 79, "nt": 44, "ntau": 22, "nu": [7, 8, 9, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 27, 28, 29, 34, 35, 51, 52, 53, 54, 55, 56, 57, 58, 65, 66, 67, 68, 69, 79, 81, 83, 84, 85, 86, 87, 94, 96], "nu_": [14, 15, 86], "nu_1": [83, 86], "nu_2": [83, 86], "nu_3": [83, 86], "nu_4": [83, 86], "nu_a": 86, "nu_b": 86, "nu_c": 86, "nu_d": 86, "nu_i": 83, "nu_m": 82, "nu_n": [34, 35, 79, 81, 82, 83, 85], "nu_u": 86, "nu_v": 86, "num": [79, 87, 88, 90, 92], "num_orbit": 96, "num_wann": 79, "number": [0, 13, 18, 19, 76, 77, 79, 81, 87, 89, 94, 96], "numer": 90, "numpi": [0, 79, 90, 91, 93, 96], "nw": [13, 18, 19, 25, 42, 79, 84, 87, 88, 89, 90, 91, 92], "nw_index": 79, "nwf": [79, 87, 88, 94, 96], "nwf_gf": [79, 87, 88], "nwf_vec": 87, "o": [1, 81, 87, 95], "object": [79, 87, 89, 93, 94], "observ": [79, 89, 93, 96], "obtain": [65, 71, 79, 81, 82, 83, 84, 87, 88, 89, 91, 92, 93, 94, 96], "occupi": 89, "occur": [79, 81], "odd": 81, "oder": 89, "off": [76, 89, 96], "offset": 89, "olivi": 0, "omega": [4, 7, 8, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 33, 40, 41, 46, 47, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 65, 66, 67, 68, 69, 71, 79, 83, 84, 85, 86, 87, 92, 94, 96], "omega_": 79, "omega_0": 82, "omega_n": [4, 30, 31, 32, 33, 37, 42, 43, 44, 45, 49, 50, 60, 63, 64, 65, 70, 71, 72, 79, 81, 88, 91, 92, 93], "one": [0, 12, 13, 14, 15, 16, 17, 18, 19, 30, 35, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 94, 96], "ones": [0, 84, 91], "onli": [0, 30, 79, 81, 83, 84, 85, 87, 88, 89, 90, 94, 96], "op1": 79, "op2": 79, "openmp": [0, 75, 94], "oper": [0, 51, 52, 53, 54, 73, 75, 77, 80, 81, 83, 84, 89, 90, 92, 93], "operatorutil": 92, "oploti": 87, "opt": 87, "optim": [0, 79], "option": 79, "orb": 84, "orbit": [0, 79, 81, 84, 87, 89, 91, 92, 94, 96], "orbital1": 79, "orbital2": 79, "orbital_nam": [79, 90, 92, 93], "orbital_posit": [79, 90, 92, 93], "ord": 91, "order": [16, 23, 75, 77, 79, 80, 84, 86, 87, 88, 89, 92, 94, 96], "org": [87, 95], "origin": 92, "osx": 76, "other": [76, 79, 81, 82, 83, 84, 89], "otherwis": [79, 81], "our": [81, 89, 91], "out": [34, 35, 79, 83], "output": [77, 79, 96], "over": [0, 14, 15, 16, 79, 81, 82, 84, 86, 88, 91, 92], "overal": 79, "overlin": [30, 79, 81], "overwrit": 89, "oxford": 81, "p": [1, 79, 81, 84, 86, 88, 93, 94, 96], "p0": 93, "p1": 79, "p2": [79, 96], "p2_from_w2dyn_p2_worm_compon": 96, "p2_remove_disconnect": 96, "p3": 96, "p3_from_w2dyn_p3_worm_compon": 96, "p3_w2dyn_to_triqs_freq_shift_alt": 96, "p_": 86, "p_chi": 96, "p_g2": 96, "p_ref": 79, "p_tri": 96, "pack_index_site_orbit": 79, "packag": [0, 84], "pade": 0, "page": [0, 75, 76, 77], "pair": [79, 81, 82, 83, 84, 86, 91], "panel": 94, "paper": [79, 84], "parallel": [0, 19, 24, 25, 26, 83, 94], "paramet": [73, 87, 89], "parameter_scan": [73, 79], "parametercollect": [73, 79, 89, 93, 94], "parametr": 73, "parcollet": [1, 86], "pariti": [81, 91], "parquet": 81, "pars": 79, "parse_band_structure_from_wannier90_band_dat": [73, 79], "parse_hopping_from_wannier90_hr_dat": [73, 79], "parse_lattice_vectors_from_wannier90_wout": [73, 79], "parse_reciprocal_lattice_vectors_from_wannier90_wout": [73, 79], "parser": 73, "part": [0, 31, 35, 46, 47, 49, 72, 79, 83, 89, 96], "partial": 91, "partial_": [82, 90], "partiali": 79, "particl": [0, 6, 7, 8, 9, 10, 11, 13, 18, 19, 20, 21, 27, 28, 29, 30, 34, 35, 37, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 65, 66, 67, 68, 69, 70, 71, 73, 82, 84, 90, 92, 94, 96], "particular": [1, 76, 79, 86], "partit": 96, "pass": [0, 79, 87, 93, 94], "patch": 0, "path": [76, 79, 91, 92, 94], "path_to_tprf": 76, "path_to_triq": 76, "pauli": 81, "paw": 95, "pbe": 95, "peopl": 84, "per": 79, "percentag": 79, "perfect": 92, "perform": [1, 84, 87, 88, 92, 93, 94, 96], "pergamon": 81, "period": [73, 79, 82, 83, 85], "permut": [81, 82, 84, 86], "ph": [27, 28, 29, 52, 53, 56, 57, 67, 68, 73, 79, 82, 84, 92, 94], "phase": [0, 71, 73, 75, 89], "phi": [30, 79, 81, 91], "phi_": 81, "phi_d_wk": [79, 91], "phi_m_wk": [79, 91], "philipp": 0, "pht": 89, "physic": [81, 91], "pi": [46, 47, 83, 85, 90, 92], "pi_": [32, 79], "pi_fk": [32, 79], "pi_wk": [32, 79], "pipelin": 0, "place": 0, "plane": [80, 89, 92], "pleas": [76, 77, 79, 93, 96], "plot": [79, 87, 89, 90, 91, 92, 93, 94, 96], "plot_bs": 94, "plot_chi": [87, 91, 92], "plot_chi_1d": 92, "plot_data": 87, "plot_dbs": 96, "plot_delta": 91, "plot_field": 94, "plot_g2": 94, "plot_sc": 93, "plt": [87, 90, 92], "pm": [79, 80, 81, 85, 90, 92], "pm1": 83, "pmatrix": 84, "point": [5, 36, 79, 81, 88, 89, 91, 92, 94, 96], "polar": [32, 79], "pole": [], "polynomi": 94, "popul": 87, "port": 0, "port_to_triqs3": 0, "posit": [0, 79, 89, 92], "positive_onli": 88, "possibl": [1, 81, 83, 86, 94, 96], "potenti": [0, 46, 47, 59, 60, 61, 62, 63, 64, 65, 79, 89], "power": [0, 79], "power_method_lr": [73, 79], "pp": [54, 58, 69, 73, 79, 81, 83], "ppx": 73, "practic": 94, "prb": [79, 81, 84, 86, 94, 96], "predict": 79, "prefactor": 84, "prepar": 79, "preprocess_gamma_for_fft": [73, 79], "present": 89, "previous": 89, "prime": 79, "principl": [81, 87], "print": [79, 88, 90, 96], "problem": [77, 79, 87, 88, 89, 96], "process": [81, 89, 91], "produc": [84, 86, 96], "product": [0, 3, 30, 34, 35, 47, 48, 49, 65, 67, 68, 69, 73, 75, 78, 79, 83, 84, 88, 89, 90, 91, 92, 96], "product_ph": [3, 73, 79], "product_ph_bar": [3, 73, 79], "product_pp": [3, 73, 79], "program": 1, "propag": [82, 83, 92, 96], "properli": 79, "properti": [79, 80, 81, 96], "protect": 0, "provid": [0, 1, 75, 76, 77, 79, 94], "pseudopotenti": 95, "public": 1, "publish": 1, "pure": 81, "py": [93, 94, 96], "pyplot": 92, "python": [76, 93, 94], "python3": 0, "pytriq": 0, "q": [12, 13, 17, 30, 37, 46, 47, 49, 50, 65, 73, 79, 81, 84, 86, 90, 91, 92, 94, 96], "quad": [83, 85, 86, 89, 90], "quadrat": [82, 83, 84, 92], "quanti": 96, "quantit": 94, "quantiti": [73, 83, 86, 87, 92], "quantiz": [83, 85], "quantum": [95, 96], "quartic": [79, 84], "quartic_permutation_symmetr": 92, "quartic_tensor_from_oper": 92, "quasi": [79, 83], "question": [73, 86], "quickli": 77, "r": [0, 1, 6, 10, 11, 12, 13, 17, 18, 19, 22, 23, 24, 25, 26, 35, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 61, 63, 65, 79, 82, 83, 84, 86, 87, 90, 91, 92, 94, 96], "r_": 82, "r_0": [83, 86], "r_t": 79, "race": 0, "rais": 79, "random": [0, 71, 73, 75, 89, 90], "rang": [79, 81, 90, 92, 93, 94, 96], "rangl": [79, 80, 82, 83, 84, 85, 89, 90, 92], "rank": [72, 79, 84, 90, 91, 92], "rate": 96, "rcl": 86, "rdbu": 92, "re": 87, "read": [80, 86, 91], "reader": 0, "real": [0, 6, 10, 11, 12, 13, 17, 18, 19, 22, 23, 24, 25, 26, 31, 35, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 59, 61, 62, 65, 79, 81, 85, 87, 88, 90, 92, 96], "reason": 84, "recent": 0, "reciproc": 79, "recommend": 76, "reconstruct": 82, "record": 89, "recuc": 86, "recurs": 79, "reduc": [30, 73, 79, 81, 91, 96], "reduct": 86, "ref": 88, "refer": [81, 92, 96], "referenc": 77, "reformul": 96, "refreq": [59, 65, 79], "regener": 0, "rel": [79, 92], "relat": [0, 46, 47, 65, 73, 79, 80, 82, 83, 84, 85, 89, 91, 94], "relative_coordin": 79, "relativist": 95, "releas": [0, 76], "relev": 79, "remain": 83, "remov": [0, 79, 96], "remove_intern": 79, "remove_internal_hop": 79, "renam": 0, "reparametr": 86, "repeat": [83, 90, 92, 96], "repeatedli": 93, "repl_hubbard": 89, "replac": 87, "report": [81, 93], "repositori": [76, 96], "repres": [79, 84], "represent": [46, 47, 79, 80, 84, 86, 87, 89, 92], "reproduc": [76, 77, 96], "repuls": 89, "requir": [76, 79, 87, 96], "reshap": [90, 92], "residu": [65, 79], "resolut": 96, "resolv": 84, "respect": [80, 81, 82, 86, 87, 96], "respons": [1, 23, 51, 52, 53, 54, 55, 56, 57, 58, 66, 67, 68, 69, 73, 86, 91, 94], "rest": 84, "restart": [0, 79], "restor": 0, "restrict": [79, 80, 81, 84], "resul": 94, "result": [1, 34, 35, 51, 52, 53, 54, 65, 79, 85, 86, 87, 88, 90, 93, 94, 96], "retar": 87, "retun": 79, "return": [79, 87, 89, 90, 92, 96], "return_tick": 79, "revers": 86, "revert": 79, "review": 81, "rewrit": 84, "rho": [79, 90, 93], "rho_": [37, 49, 50, 70, 82], "rho_k": 70, "rho_k_from_g_wk": 3, "rid": 81, "right": [12, 17, 22, 24, 25, 26, 27, 28, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 59, 60, 61, 62, 63, 64, 65, 79, 81, 83, 86, 89, 90, 94], "rightarrow": [12, 17, 22, 24, 25, 26, 31, 72, 79, 82, 90, 92, 94, 96], "rigor": 89, "rl": 86, "rohring": 81, "root": 77, "root_funct": 90, "rot90": 90, "rout": 81, "routin": [0, 1, 89, 92, 93], "row": 79, "rpa": [71, 73, 79, 81, 89], "rpa_tensor": [71, 79, 84, 90], "ru": [95, 96], "rule": 90, "run": [0, 76, 79, 84, 93, 94, 95], "r\u00f6sner": [0, 1], "s_z": 96, "salpet": [27, 28, 29, 73, 75, 81, 84, 92], "same": [76, 80, 81, 84, 86, 87, 89, 94], "sampl": [93, 94, 96], "sanit": 0, "save": 96, "save_memori": 79, "sc": 89, "scalar": [87, 95], "scale": 85, "scan": 79, "scatter": [81, 83], "scheme": [79, 84], "schrieffer": 81, "schwinger": 73, "scientif": [1, 76], "scipi": [79, 90], "scirpt": 96, "screen": [32, 33, 46, 47, 79], "script": [0, 77, 93, 94, 96], "se": 93, "search": 79, "second": [80, 83, 85, 89], "section": [0, 85, 93], "see": [75, 76, 79, 80, 81, 84, 85, 86, 88, 89, 92, 94, 96], "seed": 79, "seen": 89, "segment": 79, "select": [51, 52, 53, 54, 55, 66, 67, 68, 69], "self": [0, 37, 46, 47, 48, 49, 50, 61, 62, 63, 64, 79, 81, 88, 96], "selfconsist": 0, "semi_random_initial_delta": [73, 79], "sens": 89, "separ": [81, 86], "sequenc": 79, "seri": [79, 85, 94], "serv": 89, "set": [79, 81, 84, 89, 93, 94, 96], "settl": 83, "setup": [87, 88, 89, 92, 96], "setup_dmft_calcul": [93, 94], "setuptool": 76, "sever": 94, "sh": 76, "sha256": 0, "shall": [79, 89], "shallow": 79, "shape": [51, 52, 53, 54, 79, 90, 91, 92, 96], "share": 76, "shell": 76, "should": 79, "show": [85, 86, 87, 89, 91, 96], "shown": [81, 84, 94], "side": [86, 89], "sidebar": 0, "sigma": [46, 47, 48, 49, 61, 62, 63, 64, 79, 84, 88, 89, 90, 92, 93], "sigma_": [37, 46, 47, 48, 49, 50, 61, 62, 63, 64, 79], "sigma_f": [61, 62, 79], "sigma_fk": [62, 79], "sigma_iw": 88, "sigma_w": [63, 64, 79, 88, 93, 94, 96], "sigma_wk": [64, 79], "sigma_x": 90, "sign": [81, 89], "signatur": [79, 92], "simon": 0, "simpl": [87, 88, 89], "simpler": 80, "simplif": 81, "simplifi": [89, 91, 92], "sinc": [80, 87, 94, 96], "singl": [0, 7, 8, 9, 20, 21, 34, 37, 48, 49, 50, 65, 70, 73, 79, 80, 82, 83, 86, 92, 93, 94, 96], "single_particle_greens_funct": 87, "singlet": [0, 30, 34, 35, 79, 81, 89, 91], "singular": 92, "site": [79, 89, 92], "size": [51, 52, 53, 54, 79, 81, 87, 88, 94], "slightli": [86, 90], "small": [81, 93, 96], "smaller": [0, 81], "snippet": 84, "so": [74, 80, 81, 87], "solei": 81, "solut": [79, 81, 93, 94, 96], "solv": [0, 73, 77, 79, 81, 82, 87, 88, 92, 94, 96], "solve_eliashberg": [73, 79, 81, 89, 91], "solve_it": 79, "solve_lattice_bs": [73, 79, 94, 96], "solve_lattice_bse_at_specific_w": [73, 79], "solve_lattice_dbs": [73, 79, 96], "solve_local_bs": [73, 79], "solve_newton": 79, "solve_newton_mu": 79, "solve_rpa_ph": [3, 73, 78, 79, 84, 90, 91, 92], "solve_self_consistent_dmft": [93, 94], "solver": [0, 27, 28, 29, 73, 87, 93, 94, 96], "some": [0, 46, 47, 79, 87, 89, 92], "sourc": [77, 79], "space": [0, 6, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 31, 35, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 51, 52, 53, 54, 55, 56, 57, 58, 66, 67, 68, 69, 72, 79, 81, 86, 87, 88, 90, 92], "spars": 79, "spec": [46, 47], "special": 90, "specic": 89, "specif": [0, 79, 81, 91], "specifi": [76, 77], "specifii": 91, "spectral": [46, 47], "spell": 0, "spht": 89, "spht_hubbard_phase_diagram": 89, "spin": [0, 73, 79, 81, 87, 89, 91, 92, 94], "spin_fast": 84, "split": [49, 72, 79, 83], "split_into_dynamic_wk_and_constant_k": [3, 78], "split_quartic_tensor_in_charge_and_spin": 84, "spn": 95, "spot": [73, 91], "sqrt": [81, 83, 85, 90], "squar": [73, 79, 88, 91, 93, 94, 96], "square_lattic": [79, 91], "squeez": [88, 90], "sr": 95, "sr2ruo4": [0, 73], "src": 76, "sro": 96, "sro_hr": 96, "stabl": 76, "stablizi": 0, "stackrel": [83, 86], "stagger": 89, "stand": 86, "standard": 96, "start": [79, 84, 92, 93, 94, 96], "stat": [49, 72, 79], "state": [1, 73, 84, 89, 90], "static": [0, 4, 23, 30, 32, 33, 35, 37, 47, 49, 50, 71, 79, 81, 82, 87, 88, 94, 96], "statist": [88, 89], "std": [30, 31, 47, 71, 72, 79], "stdout": 0, "stefan": 0, "stem": 81, "step": [79, 84, 87, 91, 92, 94, 96], "still": 81, "stochast": 94, "stop": 79, "storag": [51, 52, 53, 54, 55, 56, 57, 58, 66, 67, 68, 69, 79], "store": [79, 89, 93, 94], "str": 79, "strand": [0, 1, 90], "strength": [79, 89, 92], "string": 79, "strongli": [76, 81], "structur": [79, 92, 96], "studi": [87, 89], "su": [81, 84], "sub": [], "subdivid": 89, "sublattic": 89, "subp": [87, 92], "subplot": [87, 92], "subract": 83, "substitut": 81, "sucept": [71, 79, 83, 87], "sudo": 76, "suffici": 94, "sum": [14, 15, 16, 37, 49, 50, 65, 79, 81, 82, 84, 86, 88, 89, 96], "sum_": [13, 14, 15, 16, 30, 32, 33, 34, 35, 37, 46, 47, 48, 49, 50, 61, 63, 65, 66, 67, 68, 69, 79, 81, 82, 83, 84, 85, 86, 89, 90, 92], "sum_j": [65, 79], "sum_k": 90, "sum_l": 90, "summar": 89, "summat": [34, 81, 83, 84, 86, 92], "super_lattic": 79, "super_lattice_unit": 79, "supercel": 79, "superconduct": [34, 35, 79, 81, 89, 91], "superior": 96, "superlattic": 79, "superscript": 81, "supplementari": 81, "suppli": 89, "support": 1, "sure": [0, 91], "suscept": [0, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 33, 65, 73, 81, 84, 86, 88], "susceptbilitii": [87, 94], "susceptbl": [88, 94], "susceptibilit": 84, "susceptibilitli": 96, "susceptibilti": 81, "susceptibitl": 0, "susceptibl": 96, "svg": 89, "sx": 90, "sy": 0, "symbol": [83, 85], "symmet": 85, "symmetr": [79, 81, 82, 83, 84, 89], "symmetri": [0, 79, 81, 89, 91, 92, 94, 96], "symmetrize_fct": [79, 91], "symmetrize_freq_even_mom_even": 91, "symmetrize_freq_odd_mom_odd": 91, "synopsi": [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72], "syntax": 76, "system": [77, 81, 82, 83, 84, 87, 91, 92, 93], "sz": [90, 92], "t": [0, 1, 6, 34, 35, 38, 39, 79, 80, 81, 83, 84, 85, 89, 90, 91, 92, 93, 94], "t2g": 96, "t_": 81, "t_r": 90, "tab": 0, "tabl": 81, "tackl": 81, "tag": 76, "tai": 9, "tail": [14, 15, 16, 49, 72, 79], "take": [0, 1, 35, 79, 80, 81, 89, 91, 92, 93], "taken": [79, 84], "takimoto": [81, 84], "tan": 81, "tarbal": 0, "target": [0, 51, 52, 53, 54, 55, 56, 57, 58, 66, 67, 68, 69, 79], "target_rank": [79, 88], "target_shap": [0, 88, 89, 92, 93], "target_t": 0, "task": 81, "tau": [6, 9, 10, 11, 22, 23, 25, 31, 35, 42, 44, 48, 49, 65, 79, 80, 82, 83, 85, 90, 91, 92], "tau_": [80, 83, 85, 86], "tau_a": [83, 85, 86], "tau_b": [80, 83, 86], "tau_c": 86, "tau_d": [80, 83, 86], "tau_v": 86, "taylor": 94, "tb": 79, "tb_lattic": 79, "tblattic": [73, 79, 89, 90, 92, 93], "tbsuperlattic": [73, 79], "technic": 89, "temperatur": [46, 47, 65, 79, 81, 89], "temperature_to_beta": 89, "templat": [79, 89], "tensor": [72, 73, 79, 92], "tensor_real_valu": 79, "term": [79, 81, 83, 84, 86, 89, 90, 96], "test": 76, "text": [30, 46, 47, 79, 81, 83, 92], "textrm": [80, 93, 94], "than": [76, 81, 94], "thank": [0, 77], "thei": [81, 82, 83, 84, 89], "them": [81, 89, 91, 95], "themselv": 89, "theorem": [0, 35, 81, 83], "theoret": 81, "theori": [79, 81, 91, 94, 96], "ther": 93, "therefor": [35, 81, 84, 89, 91, 94, 96], "thermodynam": [83, 94], "thi": [0, 30, 75, 79, 81, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96], "thing": 88, "think": 84, "those": [1, 81], "thread": 0, "three": [79, 80, 86, 87, 92, 96], "through": [76, 79, 87, 91, 93], "thu": [80, 85, 86], "thunstrom": 79, "tick": [79, 92], "tight": [73, 88], "tight_bind": [79, 89, 90, 91, 92, 93], "tight_binding_model": 96, "tight_layout": [87, 90, 92], "tightbind": 79, "tild": [89, 90, 96], "time": [0, 6, 10, 11, 13, 18, 19, 22, 23, 25, 26, 31, 34, 35, 38, 39, 42, 44, 49, 65, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 96], "titl": [87, 90, 92], "togeth": 35, "tol": 79, "toler": 79, "tool": [90, 91, 92], "top": 79, "total": [49, 79, 86], "toward": 81, "tp": 79, "tprf": [0, 1, 51, 52, 53, 54, 55, 56, 57, 58, 66, 67, 68, 69, 77, 83, 84, 87, 89, 92, 93, 94, 96], "tr": [80, 92], "trace": [80, 85, 92], "track": 81, "tradit": 96, "transfer": [81, 92], "transform": [0, 12, 17, 22, 24, 25, 26, 31, 35, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 65, 73, 79, 81, 84, 86, 92], "transit": [81, 89], "translat": [81, 83, 85], "transpos": 82, "trapetzoid": 23, "travel": 79, "treat": [89, 92], "treatment": 81, "tremblai": 81, "tri": 79, "triangl": [79, 96], "triangular": [29, 79], "tripl": 80, "triplet": [0, 30, 34, 35, 79, 81], "triq": [1, 75, 76, 77, 79, 84, 87, 88, 89, 90, 91, 92, 93, 96], "triqs_cthyb": [93, 94], "triqs_pi": 0, "triqs_tprf": [2, 76, 78, 79, 81, 84, 87, 88, 89, 90, 91, 92, 93, 94, 96], "triqsvar": 76, "trivial": [80, 83, 85], "true": [79, 92, 93, 94, 96], "truncat": 87, "tune": 92, "tupl": [31, 72, 79, 89], "turn": 94, "tutori": [0, 89, 96], "twice": 79, "two": [0, 7, 8, 20, 21, 51, 52, 53, 54, 55, 56, 57, 58, 65, 66, 67, 68, 69, 73, 81, 83, 84, 85, 86, 87, 89, 90, 91, 92, 94, 96], "txt": 77, "type": [2, 79, 89, 90], "typo": 0, "u": [0, 1, 30, 46, 47, 65, 71, 73, 74, 77, 79, 81, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96], "u_": [46, 47, 65, 71, 79, 81, 84], "u_abcd": [84, 90], "u_c": [84, 90], "u_d": 79, "u_m": 79, "u_vec": [90, 92], "ubuntu": 0, "uc": 90, "ueda": 81, "ugli": 79, "um": 90, "un_": 93, "under": [1, 81, 83, 84, 89, 96], "uniform": 94, "uniqu": 84, "unit": [79, 90, 92, 93], "unitari": [46, 47, 65, 79], "uniti": [51, 52, 53, 54, 79, 81, 90], "unpack_index_site_orbit": 79, "unphys": [79, 81], "unrestrict": 84, "unstabl": 0, "until": 89, "up": [79, 87, 90, 92, 93, 94], "uparrow": [79, 84, 87, 89, 90, 92, 93, 94], "updat": 0, "upf": 95, "upf_fil": 95, "upper": [79, 90], "us": [0, 1, 7, 8, 16, 30, 59, 60, 61, 62, 63, 64, 65, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 96], "usag": 89, "user_guid": 96, "utf": 0, "util": [0, 73, 89, 90, 91, 92, 93, 94, 96], "v": [32, 33, 79, 81, 84, 86, 92, 94], "v3": 0, "v_": [32, 33, 37, 46, 47, 49, 50, 79], "v_abcd": 92, "v_fk": [32, 33, 79], "v_int_abcd": 92, "v_k": [32, 33, 37, 46, 47, 49, 50, 79], "v_wk": [32, 33], "val": 90, "valid": [0, 81, 84], "valu": [5, 36, 46, 47, 51, 52, 53, 54, 55, 56, 57, 58, 65, 66, 67, 68, 69, 72, 79, 84, 85, 87, 92, 94], "value1": 76, "value2": 76, "value_t": [0, 46, 47, 79], "van": [0, 92], "vari": 96, "variabl": [76, 83, 91], "variou": [0, 89], "vartheta": [83, 85], "vec": 79, "vec2mat": 79, "vector": [79, 92], "veld": [0, 1], "verbos": 79, "veri": [89, 94], "versa": [84, 89], "version": [1, 77, 81], "vert_": 82, "vertex": [27, 28, 29, 30, 34, 35, 71, 73, 75, 79, 84, 88, 89, 92, 96], "vertic": [0, 73, 81, 83, 84], "via": [34, 35, 46, 47, 79, 89, 91], "vice": [84, 89], "view": 0, "visual": [92, 94], "visula": [93, 94], "vmax": 92, "vmin": 92, "vstack": 92, "w": [32, 33, 46, 47, 49, 79, 90, 93, 94, 96], "w2dyn_cthyb": 96, "w2dynam": 96, "w2dynamics_interfac": 96, "w_": [32, 33, 46, 47, 48, 49, 79], "w_fk": [46, 47, 79], "w_tr": 48, "w_wk": 49, "wa": [1, 83, 89], "wai": [0, 80, 84, 86, 92, 94], "walk": 91, "wannier": [79, 96], "wannier90": [0, 73, 96], "want": [74, 76, 89, 90, 91], "warn": [0, 93], "warranti": 1, "we": [0, 35, 74, 76, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 94, 96], "websit": 76, "weiss": 93, "well": 77, "wentzel": [0, 1], "were": 84, "wf": 87, "wget": 95, "what": [83, 90], "when": [0, 16, 79, 81, 83, 84, 86, 94], "whenc": [82, 87], "where": [30, 37, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 65, 66, 67, 68, 69, 76, 79, 80, 81, 84, 85, 86, 89, 91, 92, 93, 94, 96], "which": [0, 5, 31, 35, 36, 72, 77, 79, 81, 83, 84, 86, 87, 89, 91, 92, 94], "while": [79, 80, 81, 84, 87, 89], "whole": 94, "whoos": 87, "whose": 79, "why": 73, "wick": [83, 84], "window": [94, 96], "wise": 82, "wish": 89, "within": [86, 94, 96], "withn": 96, "without": [1, 14, 15, 19, 81, 83, 84, 89], "wk": 90, "wkabcd": 90, "wmesh": [79, 89, 90, 91, 92], "wmesh_boson": 89, "wmesh_boson_kmesh": 89, "wmesh_lind": 92, "word": [79, 82], "work": [79, 91, 96], "worm": 96, "wors": [], "would": [81, 87], "wout": [79, 96], "wq": 92, "wqabcd": 92, "write": [81, 83, 84, 86], "written": 1, "x": [73, 79, 87, 89, 90, 92, 96], "x_": 96, "x_j": 89, "xi": [79, 80, 82, 83, 85, 89], "xlabel": [87, 90, 92], "xleftarrow": 89, "xlim": 87, "xrightarrow": 89, "xtick": 92, "y": [1, 76, 89], "y_j": 89, "yanas": 81, "yann": 0, "yet": 81, "yield": [80, 81, 82, 86, 89], "ylabel": [87, 90, 92], "ylim": 87, "you": [74, 76, 77, 79, 84, 89, 91, 96], "your": [76, 77, 96], "z": [79, 80, 87, 92], "zeeman": [79, 89], "zero": [0, 11, 23, 31, 72, 79, 81, 90, 92, 93, 94], "zero_t": 0, "zeros_lik": [87, 92], "zeroth": 84, "zingl": 0, "zip": 92, "zone": [79, 89, 91, 92, 94]}, "titles": ["Changelog", "Authors", "<no title>", "triqs_tprf", "triqs_tprf::add_dynamic_and_static", "triqs_tprf::bose", "triqs_tprf::chi0_Tr_from_g_Tr_PH", "triqs_tprf::chi0_from_gg2_PH", "triqs_tprf::chi0_from_gg2_PP", "triqs_tprf::chi0_tau_from_g_tau_PH", "triqs_tprf::chi0_tr_from_grt_PH", "triqs_tprf::chi0_w0r_from_grt_PH", "triqs_tprf::chi0q_from_chi0r", "triqs_tprf::chi0q_from_g_wk_PH", "triqs_tprf::chi0q_sum_nu", "triqs_tprf::chi0q_sum_nu_q", "triqs_tprf::chi0q_sum_nu_tail_corr_PH", "triqs_tprf::chi0r_from_chi0q", "triqs_tprf::chi0r_from_gr_PH", "triqs_tprf::chi0r_from_gr_PH_nompi", "triqs_tprf::chi_from_gg2_PH", "triqs_tprf::chi_from_gg2_PP", "triqs_tprf::chi_tr_from_chi_wr", "triqs_tprf::chi_w0r_from_chi_tr", "triqs_tprf::chi_wk_from_chi_wr", "triqs_tprf::chi_wr_from_chi_tr", "triqs_tprf::chi_wr_from_chi_wk", "triqs_tprf::chiq_from_chi0q_and_gamma_PH", "triqs_tprf::chiq_sum_nu_from_chi0q_and_gamma_PH", "triqs_tprf::chiq_sum_nu_from_chi0q_and_gamma_and_L_wn_PH", "triqs_tprf::construct_phi_wk", "triqs_tprf::dynamic_and_constant_to_tr", "triqs_tprf::dynamical_screened_interaction_W", "triqs_tprf::dynamical_screened_interaction_W_from_generalized_susceptibility", "triqs_tprf::eliashberg_product", "triqs_tprf::eliashberg_product_fft", "triqs_tprf::fermi", "triqs_tprf::fock_sigma", "triqs_tprf::fourier_Tk_to_Tr", "triqs_tprf::fourier_Tr_to_Tk", "triqs_tprf::fourier_fk_to_fr", "triqs_tprf::fourier_fr_to_fk", "triqs_tprf::fourier_tr_to_wr", "triqs_tprf::fourier_wk_to_wr", "triqs_tprf::fourier_wr_to_tr", "triqs_tprf::fourier_wr_to_wk", "triqs_tprf::g0w_dynamic_sigma", "triqs_tprf::g0w_sigma", "triqs_tprf::gw_dynamic_sigma", "triqs_tprf::gw_sigma", "triqs_tprf::hartree_sigma", "triqs_tprf::identity", "triqs_tprf::identity_PH", "triqs_tprf::identity_PH_bar", "triqs_tprf::identity_PP", "triqs_tprf::inverse", "triqs_tprf::inverse_PH", "triqs_tprf::inverse_PH_bar", "triqs_tprf::inverse_PP", "triqs_tprf::lattice_dyson_g0_fk", "triqs_tprf::lattice_dyson_g0_wk", "triqs_tprf::lattice_dyson_g_f", "triqs_tprf::lattice_dyson_g_fk", "triqs_tprf::lattice_dyson_g_w", "triqs_tprf::lattice_dyson_g_wk", "triqs_tprf::lindhard_chi00", "triqs_tprf::product", "triqs_tprf::product_PH", "triqs_tprf::product_PH_bar", "triqs_tprf::product_PP", "triqs_tprf::rho_k_from_g_wk", "triqs_tprf::solve_rpa_PH", "triqs_tprf::split_into_dynamic_wk_and_constant_k", "Documentation", "Frequently-asked questions", "The Two-Particle Response Function tool box (TPRF)", "Packaged Versions of TPRF", "Reporting issues", "Lattice Green\u2019s functions", "Lattice Green\u2019s functions", "(Anti-)Periodicity", "Linearized Eliashberg Equation", "Linear response", "Response function notation", "Random phase approximation (RPA)", "On the single particle Green\u2019s function", "Vertex functions", "Bethe-Salpeter Equation (BSE) on the Hubbard atom", "Lattice Bethe-Salpeter Equation (BSE)", "Linearized Eliashberg equation on the attractive Hubbard model", "Mean field and RPA response for the one dimensional Hubbard model.", "Solving the linearized Eliashberg equation in the random phase approximation limit", "Square lattice susceptibility and the Random Phase Approximation (RPA)", "DMFT self consistent framework", "DMFT lattice susceptibility", "Pseudo potentials used", "Spin susceptibility in Sr2RuO4"], "titleterms": {"": [0, 78, 79, 80, 85, 87], "0": [0, 75], "1": [0, 91], "2": [0, 75, 91], "3": [0, 75, 91], "4": 91, "On": 85, "The": 75, "add_dynamic_and_stat": 4, "algebra": [78, 79], "alias": 3, "an": 82, "anaconda": 76, "analyt": [78, 79, 87, 90], "anti": 80, "antisymmetr": 84, "appli": [82, 94], "applic": 81, "approxim": [0, 78, 79, 81, 84, 91, 92], "ask": 74, "atom": [78, 79, 87], "attract": 89, "author": 1, "bar": 86, "bare": [83, 87, 92], "bc": 81, "beth": [0, 78, 79, 83, 86, 87, 88, 94, 96], "between": 84, "bind": [79, 92], "bose": 5, "boundari": 80, "box": 75, "bse": [0, 83, 87, 88], "bubbl": 78, "c": 73, "calcul": [84, 90, 93, 94], "changelog": 0, "channel": [83, 86], "chi": [83, 87], "chi0": 0, "chi0_from_gg2_ph": 7, "chi0_from_gg2_pp": 8, "chi0_tau_from_g_tau_ph": 9, "chi0_tr_from_g_tr_ph": 6, "chi0_tr_from_grt_ph": 10, "chi0_w0r_from_grt_ph": 11, "chi0q_from_chi0r": 12, "chi0q_from_g_wk_ph": 13, "chi0q_sum_nu": 14, "chi0q_sum_nu_q": 15, "chi0q_sum_nu_tail_corr_ph": 16, "chi0r_from_chi0q": 17, "chi0r_from_gr_ph": 18, "chi0r_from_gr_ph_nompi": 19, "chi_": 92, "chi_0": [83, 87, 92], "chi_from_gg2_ph": 20, "chi_from_gg2_pp": 21, "chi_tr_from_chi_wr": 22, "chi_w0r_from_chi_tr": 23, "chi_wk_from_chi_wr": 24, "chi_wr_from_chi_tr": 25, "chi_wr_from_chi_wk": 26, "chiq_from_chi0q_and_gamma_ph": 27, "chiq_sum_nu_from_chi0q_and_gamma_and_l_wn_ph": 29, "chiq_sum_nu_from_chi0q_and_gamma_ph": 28, "cmake": [0, 76], "collect": 79, "compat": [0, 76], "compil": 76, "condit": [80, 81], "consist": [93, 94], "construct": 91, "construct_phi_wk": 30, "converg": 87, "cross": [83, 86], "custom": 76, "dbse": 0, "debian": 76, "decoupl": 90, "densiti": 91, "depend": 84, "deriv": [81, 86], "detail": [81, 93], "dimension": 90, "disclaim": 1, "discret": 0, "dispers": 92, "dlr": 0, "dmft": [93, 94], "doc": 0, "docker": 76, "document": [0, 73], "dual": [0, 79, 96], "dynamic_and_constant_to_tr": 31, "dynamical_screened_interaction_w": 32, "dynamical_screened_interaction_w_from_generalized_suscept": 33, "eliashberg": [0, 78, 79, 81, 89, 91], "eliashberg_product": 34, "eliashberg_product_fft": 35, "epsilon": 92, "equat": [0, 78, 79, 81, 83, 86, 87, 88, 89, 91, 94, 96], "even": 91, "exampl": 84, "experiment": 76, "extern": 82, "f": [83, 86], "faq": 73, "featur": 74, "fermi": [36, 92], "field": [82, 85, 90, 94], "fock": [0, 79], "fock_sigma": 37, "fourier": 0, "fourier_fk_to_fr": 40, "fourier_fr_to_fk": 41, "fourier_tk_to_tr": 38, "fourier_tr_to_tk": 39, "fourier_tr_to_wr": 42, "fourier_wk_to_wr": 43, "fourier_wr_to_tr": 44, "fourier_wr_to_wk": 45, "framework": 93, "frequenc": [83, 86, 87, 91], "frequent": 74, "from": [76, 81, 82, 94], "full": [83, 87], "fulli": 86, "function": [3, 75, 78, 79, 80, 83, 85, 86, 87, 91, 92], "g0w_dynamic_sigma": 46, "g0w_sigma": 47, "g_": 87, "gamma_m": 87, "gap": 81, "gener": [0, 78, 79, 80, 82, 83, 92], "green": [78, 79, 80, 85, 87], "gw": [0, 78, 79], "gw_dynamic_sigma": 48, "gw_sigma": 49, "hamiltonian": 92, "hartre": [0, 79], "hartree_sigma": 50, "hedin": 0, "hf": 0, "hole": [83, 86, 89], "hubbard": [78, 79, 87, 89, 90], "i": [74, 87], "ident": 51, "identity_ph": 52, "identity_ph_bar": 53, "identity_pp": 54, "implement": [74, 93], "impur": [78, 79], "independ": 84, "instal": 76, "interact": [78, 79, 84], "invers": 55, "inverse_ph": 56, "inverse_ph_bar": 57, "inverse_pp": 58, "irreduc": 81, "issu": 77, "k": 92, "km": 80, "kubo": 80, "lattic": [78, 79, 88, 89, 92, 94], "lattice_dyson_g0_fk": 59, "lattice_dyson_g0_wk": 60, "lattice_dyson_g_f": 61, "lattice_dyson_g_fk": 62, "lattice_dyson_g_w": 63, "lattice_dyson_g_wk": 64, "lehmann": 0, "licens": 1, "limit": 91, "lindhard": 78, "lindhard_chi00": 65, "linear": [78, 79, 81, 82, 89, 91], "local": 94, "magnet": 91, "mainten": 0, "manual": 73, "map": 84, "martin": 80, "mathbf": 92, "matrix": 84, "matsubara": [83, 85, 86], "mean": 90, "model": [79, 89, 90], "momentum": 91, "non": [78, 79], "normal": 81, "notat": [73, 83], "odd": 91, "omega_n": 87, "one": 90, "oper": [78, 79, 85], "option": 76, "packag": 76, "paramet": [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 79], "parametr": 86, "parser": 79, "particl": [75, 78, 79, 80, 81, 83, 85, 86, 87, 89, 91], "period": 80, "ph": [83, 86, 87], "phase": [78, 79, 81, 84, 91, 92], "physic": 92, "potenti": 95, "pp": 86, "ppx": [83, 86], "prerequisit": 76, "product": [66, 86], "product_ph": 67, "product_ph_bar": 68, "product_pp": 69, "pseudo": 95, "py": 0, "py3": 0, "python": [0, 73], "q": 74, "quantiti": 84, "question": 74, "random": [78, 79, 81, 84, 91, 92], "reduc": [83, 86], "refer": 73, "relat": [81, 86], "report": 77, "represent": 0, "respons": [75, 78, 79, 82, 83, 90, 92], "return": [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72], "rho_k_from_g_wk": 70, "rpa": [78, 84, 90, 91, 92], "s_z": 92, "salpet": [0, 78, 79, 83, 86, 87, 88, 94, 96], "schwinger": 80, "self": [93, 94], "semi": 89, "setup": 93, "sigma": 87, "singl": [85, 87], "solv": [89, 91, 93], "solve_rpa_ph": 71, "solver": 79, "sourc": 76, "spin": [84, 96], "split_into_dynamic_wk_and_constant_k": 72, "spot": 81, "squar": [89, 92], "sr2ruo4": 96, "state": 81, "step": [76, 93], "summari": 94, "support": 0, "surfac": 92, "suscept": [78, 79, 82, 83, 87, 90, 92, 94, 96], "susceptibilti": 91, "symmetr": 91, "templat": [51, 52, 53, 54, 55, 66, 67, 68, 69], "tensor": [84, 90], "theori": 73, "tight": [79, 92], "tool": 75, "tprf": [75, 76, 90], "transform": [83, 85, 89], "triq": 0, "triqs_tprf": [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72], "tutori": 73, "two": [75, 78, 79, 80], "type": 3, "u": 84, "ubuntu": 76, "us": 95, "util": 79, "valu": 90, "version": [0, 76], "vertex": [81, 83, 86, 87, 91, 94], "vertic": 86, "wannier90": 79, "why": 74, "window": 87, "x": 74}}) \ No newline at end of file