-
Notifications
You must be signed in to change notification settings - Fork 16
/
audio_encoder.py
102 lines (86 loc) · 3.79 KB
/
audio_encoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
#Program to implement an audio coder, including Huffman coding and writing a binary compressed file
#as encoded version.
#Usage: python3 audio_encoder.py audiofile.wav [quality], where quality is an optional quality argument.
#Default is quality=100 as 100%. For higher values, the masking threshold is lowered accordingly,
#to reduce the quantization error and increase the quality, but also increase bit rate.
#For multi-channel audio signals, like stereo, it encodes the channels separately.
#It writes the compressed signal to file audiofile.acod.
#Gerald Schuller, June 2018
import sys
sys.path.append('./PythonPsychoacoustics')
from psyac_quantization import *
import numpy as np
import scipy.io.wavfile as wav
import os
#sudo pip3 install dahuffman
from dahuffman import HuffmanCodec
if sys.version_info[0] < 3:
# for Python 2
import cPickle as pickle
else:
# for Python 3
import pickle
if len(sys.argv) < 2:
print("Usage: python3 audio_encoder audiofile.wav [quality]")
print("default for quaity is 100, higher number give higher quality but higher bit-rate")
audiofile=sys.argv[1]
print("audiofile=", audiofile)
if len(sys.argv) ==3:
quality=float(sys.argv[2])
else:
quality=100.0
fs, x= wav.read(audiofile)
#fs, x= wav.read('test48khz.wav')
try:
channels=x.shape[1] #number of channels, 2 for stereo (2 columns in x)
except IndexError:
channels=1 # 1 for mono
x=np.expand_dims(x,axis=1) #add channels dimension 1
print("channels=", channels)
N=1024 #number of MDCT subbands
nfilts=64 #number of subbands in the bark domain
#Sine window:
fb=np.sin(np.pi/(2*N)*(np.arange(int(1.5*N))+0.5))
#Store in a pickle binary file:
#remove extension from file name:
name,ext=os.path.splitext(audiofile)
#new extension for compressed file:
encfile=name+'.acod'
print("Compressed file:", encfile)
totalbytes=0
with open(encfile, 'wb') as codedfile: #open compressed file
pickle.dump(fs,codedfile) #write sampling rate
pickle.dump(channels,codedfile) #write number of channels
for chan in range(channels): #loop over channels:
print("channel ", chan)
#Compute quantized masking threshold in the Bark domain and quantized subbands
yq, y, mTbarkquant=MDCT_psayac_quant_enc(x[:,chan],fs,fb,N, nfilts,quality=quality)
print("Huffman Coding")
#Train Huffman coder for quantized masking threshold in the Bark domain (scalefactors),
#with flattening the masking threshold array in column (subband) order:
mTbarkquantflattened=np.reshape(mTbarkquant, (1,-1),order='F')
mTbarkquantflattened=mTbarkquantflattened[0] #remove dimension 0
codecmTbarkquant=HuffmanCodec.from_data(mTbarkquantflattened)
#Huffman table for it:
tablemTbarkquant=codecmTbarkquant.get_code_table()
#Huffman encoded:
mTbarkquantc=codecmTbarkquant.encode(mTbarkquantflattened)
#Compute Huffman coder for the quantized subband values:
#Train with flattened quantized subband samples
yqflattened=np.reshape(yq,(1,-1),order='F')
yqflattened=yqflattened[0] #remove dimension 0
codecyq=HuffmanCodec.from_data(yqflattened)
#Huffman table for it:
tableyq=codecyq.get_code_table()
#Huffman encoded:
yqc=codecyq.encode(yqflattened)
pickle.dump(tablemTbarkquant ,codedfile) #scalefactor Huffman table
pickle.dump(tableyq ,codedfile) #subband sample Huffman table
pickle.dump(mTbarkquantc ,codedfile) #Huffman coded scalefactors
pickle.dump(yqc ,codedfile) #Huffman coded subband samples
totalbytes+= len(tablemTbarkquant)+len(tableyq)+len(mTbarkquantc)+len(yqc)
numsamples=np.prod(x.shape)
print("Total number of bytes=", totalbytes)
print("Total number of samples:", numsamples)
print("bytes per sample=", totalbytes/numsamples)
print("Hence bis per sample=", 8*totalbytes/numsamples)